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The classical bending theory of elastic plates is based upon the assumption that the
internal moments are proportional to the curvatures of the median deformed surface. This
theory does not include the effects of shear and normal pressure in the plate. The model
of a bi-modulus foundation is a realistic generalization of the Winkler’s classical one and is

- widely used to represent the subgrade of railroad systems, airport lanes [1], [2]. The derived
equation of elastic thick plates on bi-modulus foundation considers shear and normal stress
as linear variable across the plate thickness.

This paper presents numerical solutions for thick plate resting on bi-modulus subgrade.
These solutions take into account the shear distortion, and they are compared to the so-
lutions obtained by Finite Element Analysis and with the Winkler’s model. Particular
sclutions for the rectangular plate of clamped boundary, for the hinged rectangular plate
and for a semi-elliptical plate, are discussed.

The numerical solutions consist of double power series and they were obtained based
on the minimum of the total strain energy [1]. Parametric studies have been performed in
order to emphazise the effects of the chosen foundation and that of the geometry.

1. Numerical Solutions of the Thick Plate on Bi-modulus Foundation

Elastic thick plates resting on bi-modulus foundation (Fig.1) obey the funda-
mental system of differential equations:

(K + c2)Aw — cow + K0 = —p(z,y),
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v — Poisson’s ratio of the plate (usually concrete), D - the plate bending stiffness,
A - Laplace operator, ¢; and ¢, - the Pasternak (or bi-modulus) model elastic
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constants, o and 1 — the complete rotations about z and y axes due to the thin
plate bending and due to shear (the thick-Mindlin) model.
When ¢ and 1 are eliminated, it results [1]:

(2) [D(2 - v)A — 2K]0 = (vDAA + 2K A)w(z, y).
Then:

2—v
(3) DAAw(z. y) = (l - DW) (p—qs)

Thick plate
Shear Layer

Elastc springs

Fig 1 - Elastic thick plate on bi-modulus foundation.

In Eq. (3) ¢, is the response of the elastic bi-modulus foundation:

(4) ¢:(z,y) = ai(z.y) — ez, y).
From Eqs. (3) and (4) it yields finally:

D[2K + (2 — v)e]AAw(x.y) — [2K ez + D(2 — v)e|Aw(z,y) + 2K eyw =
(5)
= [2K - D(2 - v)A]p(z.y).
The additional term of the right member from Eq. (5) takes into account the shear

stress and the effect of inter layver pressure, 0.
The approxiimate solution of the last equation is taken as [1]:

(=T - <]

(6) w(-fa.f;‘) - Z Z AmﬂSmn(I) y);

m=0n=l)

and con-cquentl,

=]

] == 0
(7a) ¢(e,y) = 3 3 Bun=Sun(@,9), (78) $(zy) = > Ecm,,a—qu(x,y),

m=0n=(0 m=0 n=0
where Spa(z,y) = z'y" F(z,y) and F(z,y) is a function depending on boundary
conditions.

The principle of minimum strain energy was applied. A system of linear equations
of infinite degree resulted, which enables to find the coefficients Ayun, Bmny Cn-
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1.1. Rectangular Hinged Plate Acted by Uniform Load (Fig.2a)

The load intensity, p(z,y) = p, and the boundary function is chosen as:
(8) F(z,y) = [Ilg.(z,y)],
1=1

where gi(z.y) is the boundary equation and pi=1 for the simply supported edge.
Finally S,.,, becomes:

(9) Smn(,y) = 2™y F(z,y) = 2™ y™* (2 — a)(y - b).
The first approximation will be:
Soo = zy(z — a)(y —b).

The complete solution is given in [1].

» YA
b BRI
0 a x 0 a x
a b c

Fig. 2 - Case studies: a - rectangular hinged plate; b - rectangular clamped
plate; ¢ — elliptical plate clamped on the curved boundary and free on y-axis.

1.2. Rectangular Clamped Plate Acted by a Uniform Load (Fig.2b)

In this case the boundary function, F(z, y), was chosen as:
F(a,y) = 2z — a)%y*(y - )’

and Sy, results from Eq. (9). The fully developed solutions ar« given in [1], and they
require solving 3 x 3 or 6 x 6 algebraic systems of linear equation (for the first or the
2" approximation of the solution). The approximate functions, w(z. y), bending and
{wisting moments and shear forces depend on the mechanical properties of ground.
€. ¢1, which is the Winkler bed coefficient and ¢, 1s calculated as:

H Eq
29 = —Gy; Go = -——
€2 ha 0 2(1 + o)

Ey and vy are ground me-hanical properties for the plane strain state, but f is the
depth of the ground interaction layer [1].

1.3. Semi-elliptical Plate (Fig.2¢)
In this case, the boundary function, I'(z,y), was chosen as:

oyt 2y
(10) I'(a,y) (n_2 1 b2 b)

2
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and S, results from Eq. (9):

2 2 2
(11) &msz“ﬁ%+3-E)-

2 2 9.\
(12) Sm:(fﬁy———"”—')‘
The vertical displacement, w(z,y), becomes:
o2y Qy)2

(13) woo(z,y) = X1 (Eg'fb—z‘j

The rotation angles are:

4z (2* Yy 2y
(14a) ¢un(1:y)=§(§+§—*{; X2,
Ay—b) (22 v %
(14b) ’f»‘uu(I:y)=*—a;— F+b_2__1!:_ Xa.

The bending and twisting moments are:

A G
(150) Mgaw:han[gsu¢n+v§3umﬂ,

G A
(15 My(a.9) = 2D [ SR(.p) +vigBa)]

= z(y—>b
(15¢) M_y(z,y) = —2D(1 —v) (gzbz ){Xl + Xa),
where
(16 a) A=(2-v)Xy —vX,, (16 b) C = X3 — X,
322y 2 22 3yt by
v T _ — = - — £ = == i 2

(160 Blry) =g+ (16d)  Ray)= G+
Xi.....Xs are the solutions of the matrix equation:

(17) AX =4
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The matrices A and § are

A; bzAg azAg Jl
(18] A= A-z A4 azAs 1 !5 — (5‘;
Ag bﬂAs Aﬁ 63

and depend on plate mechanical properties and geometry and also on bi-modulus
subgrade mechanical properties.

Here
A= .l [45 (a* +6%) + 29a’b’] +a(a®+ b’) +
- )- 1+v 6-17 .
a
e 263a%b* +a a?b? (23a? + 257b%)
D 15-16-17 ' D 12-17 '
v(l—v) 105
19b Ay = — . —— (2942 + 45b°
(19b) 2 i 4_1?(911-[-5)4-0:,
_ y(l-v) 105 5 3 2 2
(19¢) As=——— 'ﬁ(ng +45a%) + @, (19d) Ay=pb*+Bia’ +a,
7 192410
].g — - ) o 2 2
( f') As 6.17 110 (lgf) Ag ﬁa +;Glb + a,
6(1 —v) 1—v—1v*(1+0v*) 105 (1—-v)
20 = 0 — B N — =
(20 == P = a1 M=%
Tath? 105 ? 105 2
20b) & = = Y a9 2 2, _ . 272 — 5.
(00) b =p |15 ~ 5.7 ERC 0@ V) b=—pgm et b=

2. Models for Finite Element Analysis

Modelling is an art based on the ability to visualise physical interactions. All basic
and applied knowledge of physical problems, finite elements and solution algorithms
contribute to modelling expertise.

Sometimes, the user of a computer program does not understand the physical
action and boundary conditions of the actual structure, and the limitations of appli-
cable theory, well enough to prepare a satisfactory model.
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Another difficulty occurs when the behaviour of various elements, the program’s
limitations and options were not understood well enough to make an intelligent choice
among them. In this case the model fails to reflect important feature of the physical
problem. and sometimes there is obtained an overflow of computed results, which
are not properly examined and questioned.

(hoosing one element-type or mesh or others, is another problem. The analyst
must nnderstand how various elements behave in various situations The practice of
using Finite Element-based software showed that elements and meshes of intermedi-
ate complexity are better fitted to many problems.

A coarse mesh may not always depict the actual structure. Figs.3a and 3b
show thick plates, clamped on the boundary, modelled by coarse meshes The model
surface 1s much smaller than the actual one, since there is only one internal node,
which is not restrained. In this case, the output results will be based only on nodal
parameters of the non-restrained node.

Even the selection of the same number of elements but refined, with nodes at
the mid-edge helps to a better approximation (Fig.3¢). Increasing the number of
elements (Fig. 3d) leads to a similar result, since there are five free-to- move nodes in
the last two cases.

a b ¢ d
Fig 3 - Coarse  mesh alternatives of modelling a plate clamped-on the boundary

The model will comprise now all structural parts, including those carrying lit-
tle load or little stress. Most of commercial software may model curved boundary,
but when this option is rot available. the substituting polygon or polyhedron must
preserve the actual volume of the structure. When the mesh is irregular, the recom-
mended angles are from 45° to 135°.

At least two layers of solid (brick) elements must be used, to obtain the stress
from the median surface.

Solid three-dimensional element [4] does not allow rotations. so that in this case
the boundary conditions for simply supported and hinged edges are not accurately
depicted. Additional elements like double hinged rigid rods may help to allow the
edge rotation, if the software capabilities do not include thick plate elements.

3. Parametric Studies

Parametric studies vere pociormed 10 order to compare, for each type of pre
vioushv presented plate. the numerical solution to other solutions and also to FEA

resulis
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Winkler’s classical case has been obtained, too, by setting ¢; =0

The clamped and hinged plates were quadratic, and the variable parameters
were the ratio of Young moduli plate-subgrade. and the influence depth, H, was also
modified, for one case of analysis.

For elliptical plate, the ratios h/a and h/b were modified also, to state bounds of
validity for the thick plate theory.

The obtained results are presented in Table 1, and the next Section refers to
them.

Table 1
A Synthesis of Paramectric Studies

p=10" N/m?, square plate, . .
a=30m, h=2/10 Vertical deﬂectlo]lx, [mm], at the plate centre
Simple supported plate

n = E /B T8 10” 10! 100
H=12m H H 2H 3H H H
Polynomial series, one term 142 412 6.887 63.683 | 61.623 | 38.019 |11.857
Polynomial series, two terms 145.015 | 66.438 | 64.199 | 62 105 [ 38201 |[11.875
Winkler model, polynomial series, 143.408 68.248 17501 |36.498
one term

Winkler model, polynomial series, |}/« 01 68.843 47.708 | 36.596
Ltwo terms

FEA 65 45 6522 i 60.797 | 60522 | 47.8846 | 15.0136

Clamped plate

Polynomal series, one term 20.4128 | 17.546 | 17201 [ 1687 [13683 | 5.2274
Winkler imodel, polynomial series, 90.4572 17 906 16.22 | 14.824
one term

Semi-elliptical plate: a=12m,b=9m, h=3 m, H =12 m - Maxiriun vertical defloction
Polynomial series, one term 3.05627 | 3.15555 | 3.051985 [ 2.96067 | 2 3228 |0 68687
Winkler model, polynomial series, 3065358 3 26446 3.0653 | 2 599
one term
FEA (coarse mesh) 10.703 10.391 8.099 [3.093

4. Tonclusions

1. Winkler’s Model versus Bi-modulus Model Winkler's model behaves much
more elastically, but this feature is more obvious for 10° < Eave/ Eson < 102. The
clay subgrade (Epjaie/ Esoil = 10°) is much more deformable than other cases. In this
case, for rectangular plates the results were of the same order of magnitude, both for
bi-modulus and for Winkler subgrade. For the semi-elliptical plate the results are
different for 10° < Egjace/ Eoon < 101,

2. Influence of Interaction Layer Depth, H. The depth of the interaction layer
has a little influence, less than 6% (Table 1) for almost all-approximate solutions for
all cases.

3. Influence of Ratio Eyjaee/Esoir. It is obviously that the subgrade mechanical
properties would influence the deflections, and then the reactive pressures, and the
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distribution of internal forces. This effect is more important for high ratios, for all
analysed plates.

4. Influence of Aspect Ratio h/a for Semi-elliptical Plate. Fig.4 and Table 2
show the importance of this ratio; otherwise, applying Kirchhoff theory instead of
the thick plate one would cause significant errors. The higher the aspect ratio,
the more flexible becomes the plate. Further studies are required to state accurate
bounds of using one or other theory (or one or the other type of finite elements).
The effect depends also on the general plate shape.

Semi-elliptical Plate: Maximum Deflection

40 4 - B —— —————ue —

L\
15 ,.__.I
i |

5 |
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1] 0.05 01 0.15 02 028 03 035

ha
Fig. 4.- Plot of vertical deflection in terms of h/a ratio.

W, [mm]

Table 2
Semi-elliptical Plate: Bending Moment Distribution
in Terms of h/a Ratio

hfa M, M,
Epj_-,memn:le (N-m]-lﬂ""‘ [Nvm]‘iﬂ's

0.05 8.436 1.761
0.10 17.022 4.091
0.15 16.548 5.233
0.20 12.965 6.644
0.25 8.838 9.747
0.30 12.871 30.326

5. FEA versus Polynomial Approzimation. FEA analysis has been performed by
SAP2000 program. “Brick” 8-node elements were chosen, but these elements cannot
represent the plate-bending phenomenon, since all rotations are restrained. Satisfac-
tory and close results were obtained for small Epate/ Esoit aspect ratios, especially for
rectangular plates. A very coarse mesh has been used to model the semi-elliptical
plate, where the results are of another order of magnitude. For further studies it is
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recommended to build up an AutoCAD model and then import it for analysis.

Recewed, July 26, 2004 Technical Unwersity “Gh.Asachi”, Jassy,
Department of Hydrotechnical Structures
and

* Department of Structural Mechanics
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STUDIU COMPARATIV AL SOLUTIILOR PENTRU PLACILE
ELASTICE GROASE REZEMATE PE FUNDATIE BIMODUL

(Rezumat)

Se analizeaza, comparaliv, solutiile obfinute pentru inconvoierea plicilor groase rezemate pe
mediu elastic cu doud caracteristici, incluzand efectul forfecirii si al efortului normal. Solutiile au
fost obginute prin metoda elementelor finite gi prin metode numerice bazate pe minimizarea energiei
totale. S-au analizat diferite conditii de contur geometrice (placa dreptunghiulari, semi-eliptica) i
de rezemare (incastrare, simpla rezemare).



