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Abstract. The main idea of meshless methods is to approximate the unknown field by a 
linear combination of shape functions built without having recourse to a mesh of the 
domain. The computational domain is discretized using a set of scattered nodes. The 
shape functions associated with a given node is then built considering the weight 
functions whose support overlaps the one of the weight function of this node; thus, there 
is actually no need to establish connectivities between the different nodes as in the finite 
element method. Monte-Carlo integration techniques are promising schemes in the 
context of meshless techniques. The purpose of the present paper is to implement in EFG 
a new body integration technique for the evaluation of the stiffness matrix that does not 
rely on a partition of the domain into cells, but rather points. Numerical examples based 
on three-dimensional elasticity problems are presented to examine the accuracy and 
convergence of the proposed method. In this context, Quasi-Monte Carlo integration 
techniques are used. The results are compared to traditional EFG. Conclusions are drawn 
concerning the proposed techniques and its capabilities. 
Key words: Meshless formulations, EFG, 3D elasticity, Monte-Carlo integration 
techniques 

1. Introduction 

In engineering one often has a number of data points, as obtained by 
sampling or some experiment, and tries to construct a function, which closely 
fits those data points. The so-called meshless methods construct approximations 
from a set of nodal data without the need for any (finite - element) a priori 
connectivity information between the nodes. In general, a meshless method uses 
a local interpolation or approximation to represent the trial function with the 
values (or the fictitious values) of the unknown variable at some randomly 
located nodes. 

The fast convergence, ease of adaptive refinement, trivial rising of the 
consistency order and the continuity of derivatives up to the desired order are 
features of this class of methods.  
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The meshless approximations functions constructed in continuous or in 
discrete are used to approximate the displacement (or other variables of interest) 
to solve applied mechanics problems.  

The approximations are used as approximations of the strong forms of 
partial differential equations (PDEs), and those serving as approximations of the 
weak forms of PDEs to set up a linear system of equations. To approximate the 
strong form of a PDE using a particle method, the differential equation with 
partial derivatives is usually discretized by a specific collocation technique. To 
approximate the weak form of a PDE various Galerkin weak formulations are 
used. Several types of discrete approximation functions can be used; among 
these can be found: a) moving least square (MLS) functions, b) partition of 
unity (PU) functions, or hp-cloud functions, as representatives. Surveys can be 
found in [6]. 

2. Discrete Moving Least Squares: EFG interpolation 

The basic idea of the MLS approach is to approximate u(x), at a given 
point x, through a polynomial least-squares fitting of u in a neighborhood of x. 
That is, u(x) is approximated with the polynomical expression 
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where pT(x) = [ p1(x),   p2(x), …,  pm(x) ] is a vector of complete basis functions 
of order m. In the framework of the Element Free Galerkin method, the vector 
a(x) is obtained through a least-squares fitting, by means of minimizing the 
square of the distance between n data values defined at the points xi and an 
approximating function evaluated at the same points 
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That is, a(x) is the solution of the linear system of equations given by eq. (2): 
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A number of weight functions are available in the literature ([2],…, 
[5]). In this paper, we use cubic spline weight functions with circular domain 
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where r = ║x - xI║ is the distance from the chosen point and rI is the size of the 
support for the weight function of center I. 

After substitution of the solution of eq. (3) in eq. (1), the least-squares 
approximation of u in a neighborhood of x is obtained 
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The φφφφi(x) are called the interpolation functions of the MLS 

approximation.  
In matrix form, the arrays A(x) and B(x) may be written as 
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3. Meshless Based on a Galerkin Weak Form 

The mesh-free shape functions can also be used in the discretization of 
the weak integral form of the boundary value problem. For small displacements 
in three-dimensional, isotropic and linear elastic solids, the equilibrium equation 
and the boundary conditions are 
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where =σ Dε  is the stress vector, D – the material property matrix, suε = ∇ε = ∇ε = ∇ε = ∇  –  
the strain vector, u – the displacement field, b – a body force vector, t  is the 
prescribed traction vector on Neumann boundary, tΓ , and u  – the vector of 

prescribed displacements on Dirichlet boundary, uΓ . { }∆ = ∂ ∂ ∂ ∂ ∂ ∂x y z
T / , / , /  

is the vector of gradient operators, ∇s
u is the symmetric part of ∇u. 

The variational form of eqs. (10) and (11) is given by: 
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where δ denotes the variation operator and δWu represents a term that enforces 
essential boundary conditions. The explicit form of this term depends on the 
method by which the essential boundary conditions are imposed ([1],…,[3]). In 
this study, Wu is finding using Lagrange multipliers and is evaluated using the 
following relation: 
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In order to obtain the discrete equations from the weak form, the trial 
function u and the test function δu are approximated by MLS schemes in the 
form (5). The final discrete equations can be obtained by substituting the trial 
functions and test functions into the weak form (13), yielding the following 
system of linear algebraic equations: 
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and, in addition, 
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3. Results and Discussion 

The next case analysed is that of a 3D beam loaded uniformly on two 
opposite sides, as illustrated in Fig. 1. A uniform traction t of magnitude t= 1.0 
per unit area was applied at the lateral sides of the element. The problem was 
solved considering the symmetry, namely, the appropriate symmetry boundary 
conditions were applied to the two symmetry planes. The material properties of 
the beam are chosen as follows: Young's Modulus = 100 and Poisson's ratio = 
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0.25 and 0.4999. The geometric data was assumed as: length, L = 12a, height, 
H= 3a, and width, W = 3a, where a = 10. 

The problem was solved using EFG formulation and Lagrange 
multipliers for imposing of the boundary conditions. MLS interpolation is used 
to interpolate the field variable; MLS functions are constructed using cubic 
spline weight functions with circular supports and linear polynomial 
approximation. The deformed quarter beam using Poisson's ratio = 0.25 is 
plotted in Fig. 2 (the mesh is only for plot purposes). 

 

 
Fig. 3a shows the convergence in strain energy when a h-type 

refinement is performed using the EFG. The strain energy of the limit solution 
of the system is obtained by solving the same problem using a 50 x 50 mesh of 
9-noded finite elements. 

Fig. 3b shows the convergence curves for the relative errors of the 
displacement at the middle right face when the same problem is solved using 9-
noded finite elements.  

Two important observations can be made from Fig. 3; First, for a 
Poisson's ratio of 0.25, the EFG exhibits a much higher rate of convergence than 
the one obtained in the classical finite element analysis when unstructured 
meshes are used. This is due to the fact that continuous approximations are used 
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in the EFG but it may also result from the robustness of the method and the 
accuracy of the integration. 

The 
second observation is that when the Poisson's ratio is increased to 0.4999, the 
finite element solution as well as the solution obtained from the EFG "locks", as 
evidenced by deterioration in the rate of convergence. This implies that the 
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displacement-based EFG suffers from exactly the same problem as the classical 
finite element techniques. The reason why a purely displacement-based 
formulation "locks" is the following: in a pure displacement-based formulation 
the computed displacement field needs to satisfy the constraint of very small 
volumetric strains (which become zero as the condition of total 
incompressibility is approached) while the pressure is of the order of the 
boundary tractions. The displacement approximation space is not rich enough to 
accommodate this constraint without a drastic reduction in the rate of 
convergence. 

4. Conclusions 

The construction of meshless approximations was reviewed and the 
effect of numerical integration errors on the solutions was presented. For 
arbitrary grids the meshless shape functions are rational functions with compact 
support in the domain. Hence, they are not integrated as accurately by Gauss 
quadrature. To overcome these difficulties, Quasi-Monte Carlo integration 
methods is proposed to perform the quadrature. The method is applicable to any 
type of meshless methods with any number of dimensions and has the 
advantage of not increasing the complexity even for the 3-D case. Here, we 
have presented a numerical test for a 3-D elasticity problem. Then a comparison 
with the classical FEM will be made of the effectiveness of the integration 
technique. A fully optimized code based on such a computational procedure 
would surely have a long life since it could easily evolve as meshless 
technology progresses. 
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METODE DE DISCRETIZARE FĂRĂ RETEA ÎN FORMULAREA GALERKIN 

PENTRU REZOLVAREA GRINZILOR 3-D 
 

(Rezumat) 
 
Principiul metodei de discretizare fără reţea (meshless) este de a aproxima câmpul 
deplasărilor printr-o combinaţie liniară de funcţii de aproximare construite ţinând cont 
doar de localizarea intr-un punct în spaţiu, şi nu de o reţea de elemente. Prin urmare, 
domeniul de calcul va fi discretizat doar prin noduri, fără a fi necesară reţeaua de 
elemente finite. Funcţiile de aproximare asociate fiecărui nod sunt definite cu ajutorul 
funcţiilor de pondere ale căror domenii de influenţă se intersectează, nemaifiind astfel 
necesară asigurarea condiţiilor de continuitate a deplasărilor intre între elemente, ca in 
metoda clasică de discretizare prin elemente finite. 
Tehnica de integrare Monte-Carlo pentru integrarea coeficienţilor matricei sistemului de 
ecuaţii este promiţătoare in contextul metodelor de discretizare fără reţea. Se studiază 
implementarea în metoda fără reţea EFG a tehnicii de integrare Monte-Carlo, 
eliminându-se necesitatea creării unei reţele pentru integrarea termenilor sistemului de 
ecuaţii. Se prezintă un exemplu numeric pentru calculul grinzilor 3-D bazate pe teoria 
elasticităţii. Se studiază acurateţea şi convergenţa tehnicii de integrare Monte-Carlo 
implementată.  

 
 

 

 

 

 

 


