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Abstract. The problem of plates supported on an elastic medium, characterized by
several stiffness coefficients corresponding to both linear displacements and rotations,
is analysed. This model can be adopted for flexible plates supported on piles. Some
particular cases, based on the results presented in [1], [2], are discussed and developed. A
case study is performed and the main conclusions from design point of view are drawn.
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1. Introduction

The plates continuously supported on an elastic, deformable medium are well
enough studied for the case of Winkler’s medium type, characterized by a stiffness
coefficient that is in fact the proportionality factor between the reactive force at a
point of the supporting medium and the linear displacement, normal to the surface,
at the considered point.

In order to satisfy the requirements imposed by some actual and more
complex circumstances, the medium model with several stiffness coefficients
corresponding to both linear displacements and rotations, have been introduced.
Some studies concerning the design of plates based on this model have been
performed.

Further on, this model of the elastic medium, characterized by several stiffness
coefficients, one of them corresponding to Winkler’s model and the others being
the proportionality factors between the continuously distributed torques and
horizontal pressure, respectively that occur on the surface and the corresponding
slopes of the deformed contact surface, are more profoundly studied.

A practical case that can be analysed by using this model is the case of plates
of mat type, supported on piles [1], [2], [4]. For the plates that have the ratio
between the minimum dimension in their own plane and the thickness greater
than five, the mat plate must be considered as flexible.

Some constructions provided with such a foundation type have walls of great
stiffness, as buildings with structural walls or rigid basements made of concrete,
tanks, silos, etc. In these cases the mat can be considered as simply supported or
built in the walls, having also vertical displacements, which must be taken into
account.



i
i

i
i

i
i

i
i
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2. Relations between the Internal Forces at the Pile Head and the
Corresponding Displacements

The long piles, frequently exceeding 10 m and generally made of pre-cast
reinforced concrete are introduced in the ground by driving. In the present and
frequently used technologies, the piles are built in the mat.

The head of the pile built in the plate has two linear displacements, one in the
direction of its longitudinal axis and the other one in the normal direction to its
longitudinal axis and an angular displacement (Fig. 1).
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Fig. 1 – Internal forces and 

displacements Fig. 1. – Internal forces and displacements.

The model for the pile while it is introduced in the ground is that of an element
subjected to an axial force that is resisted by the head of the pile, by the lateral
friction that occurs and the surrounding soil deformation.

Between the axial force at the pile head, N0p, and its axial displacement, δN p,
the following relation can be expressed as

(1) N0p = kN
EpAp

lp
δN p = ρNδN p,

where Ep, Ap, lp are the longitudinal modulus of elasticity, the cross-sectional
area and the length of the pile, respectively; kN is a coefficient experimentally
determined on the test piles and takes into account the soil deformation under the
pile head, the lateral friction effect, the deformation of the surrounding soil and
eventually the effect produced by the fact that the piles work together.

The head of the pile built in the mat will have a linear displacement in the
horizontal direction (normal direction to the pile longitudinal axis direction) and
an angular displacement (rotation). The rotation of the pile head in one direction
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can be considered equal to the slope of the plate deformed middle surface in the
same direction (Kirchhoff’s model).

When the piles have circular or square cross-section, in a plane parallel to the
reference system plane, the internal forces at the pile head are

(2) V0p = ρV δ δ0p +ρV θ θ0p, M0p = ρMδ δ0p +ρMθ θ0p,

where V0p is the shear force at the pile head, M0p – the bending moment at the pile
head, ρV δ , ρV θ , ρMδ , ρMθ – the pile stiffnesses with respect to the axis the bending
occurs. These stiffnesses also depend on the lateral rigidity of the soil. The first
subscript indicates the stiffness type: V – shear force, M – bending moment, while
the second subscript shows the unit displacement type: δ – deflection (δ = 1) and
θ – rotation (θ = 1).

When the soil lateral rigidity coefficient is constant in depth and the pile is
considered a semi-infinite bar introduced in an elastic medium, the following
relations are obtained for these stiffnesses:

(3) ρV δ =
k′bp

αp
, ρV θ = ρMδ =

k′bp

2α2
p
, ρMθ =

k′bp

2α3
p
,

where the terms have the following significances: k′ – the coefficient of soil lateral
rigidity, bp – the pile dimension in the direction normal to the bending plane, αp
– damping coefficient evaluated as follows

(4) αp =
(

k′bp

4EpIp

) 1
4

,

where Ep represents the longitudinal modulus of elasticity for the pile and Ip –
the moment of inertia of the pile cross-section with respect to its own principal
centroidal axis, normal to the bending plane.

3. Supporting Medium Description

It is presumed that the piles are identical, having the same stiffnesses in axial
and transverse directions. They are uniformly distributed and considered as built
in plate.

The discrete connection between plate and piles is substituted by an equivalent
continuous medium, that is, the stiffnesses of the piles in axial (vertical) and
transverse directions are uniformly distributed over the corresponding contact
surface, Ω.

In the vertical direction it is count only on the strength of piles and the pressure
on the medium is expressed as

(5) pn =
N
Ω

=
ρN

Ω
δN p = kNδN p.
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The horizontal pressure acting on the medium and the intensity of the
distributed torques there are obtained from the ratios

(6) pt =
VOp

Ω
, m∗ =

M0p

Ω
,

or, by taking into account relations (2),

(7)


pt =

ρV δ

Ω
δ0p +

ρV θ

Ω
θ0p = kV δ δ0p + kV θ θ0p,

m∗ =
ρMδ

Ω
δ0p +

ρMθ

Ω
θ0p = kMδ δ0p + kMθ θ0p.

In case of actions with normal direction to the middle plane of the plate supported
on piles, when the assumption of the normal line element (Kirchhoff) is admitted,
it results that the displacement, δ0p, is produced by the pile rotation, θ , in the
considered direction, so that

(8) δ0p =
h
2

θ .

The pile being built in the plate θ0p = θ ,

(9) δ0p =
h
2

θ0p.

By substituting relations (8) in (6) the following expressions are obtained:

(10)


pt =

(
kV δ

h
2

+ kV θ

)
θ0p = ktθ θ0p,

m∗ =
(

kMδ

h
2

+ kMθ

)
θ0p = kmθ θ0p.

From relations (5) and (9) it results that the hypothetic medium with its
imposed constraints is characterized by stiffness coefficients, which permit the
evaluation of medium reactions upon the plate. These reactive forces (Fig. 2) may
be expressed in terms of plate displacements, w and θ , namely

(11) −pn = kw, −pt = ktθ , −m = kmθ ,

where

(12) k = kN , kt = ktθ , km = kmθ .

By reducing the pressure pt with respect to the plate middle surface it results

(13)
−m =−

(
m∗+ pt

h
2

)
=−

(
km + kt

h
2

)
θ =

=− 1
Ω

[
ρMθ +(ρV θ +ρMδ )

h
2

+ρV δ

h2

4

]
θ = k∗θ .
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Fig. 2 – Reactive forces 

Fig. 2. – Reactive forces.

4. The Differential Equation of Plate Deformed Middle Surface

With respect to a Cartesian coordinate system, for which the xOy plane
coincides to the unloaded plate middle surface and z-axis is normal to this plane
and has the sense of gravitational acceleration, the deformed middle surface
equation has the form w = w(x,y). This is obtained by integrating the differential
equation for k∗x = k∗y = k∗.

(14)
∂ 4w
∂x4 +2

∂ 4w
∂x2∂y2 +

∂ 4w
∂y4 +

k∗

D

(
∂ 2w
∂x2 +

∂ 2w
∂y2

)
+

k
D

w =
q(x,y)

D
,

or

(15) ∇
2
∇

2w+
k∗

D
∇

2w+
k
D

w =
q(x,y)

D
,

where

(16) D =
Eh3

12(1−ν2)
.

q(x,y) represents the intensity of the distributed load acting normal to the plate
middle plane.

For same particular support and loading cases equation (14) can be integrated.
The relations for internal forces are

(17)



Mx =−D
(

∂ 2w
∂x2 +ν

∂ 2w
∂y2

)
, My =−D

(
∂ 2w
∂y2 +ν

∂ 2w
∂x2

)
,

Mxy =−D(1−ν)
∂ 2w
∂x∂y

, Vx =−D
(

∂ 3w
∂x3 +

∂ 3w
∂x∂y2

)
+ k∗

∂w
∂x

,

Vy =−D
(

∂ 3w
∂y3 +

∂ 3w
∂x2∂y

)
+ k∗

∂w
∂y

.
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The boundary conditions are valid for simply supported and fixed sides, while
for a free side they become:

(18)
∂ 3w
∂n3 +(2−ν)

∂ 3w
∂n∂ t2 −

k∗

D
∂w
∂n

= 0,

where n indicates the normal direction to the contour and t the tangent direction.
With a good enough accuracy, there are evaluated

a) the axial force at the pile head

(19) N0p ∼= ρNw;

b) the bending moments at the pile head, in x- and y-axes directions

(20) Mx =
(

ρMδ

h
2

+ρMθ

)
∂w
∂x

, My =
(

ρMδ

h
2

+ρMθ

)
∂w
∂y

.

The deflections, w, and the slopes ∂w/∂x and ∂w/∂y are computed at the points
where the piles are considered to be built in plate.

When the pile stiffness has the same magnitude in any direction, the maximum
bending moment at its head is given by the maximum slope. It is firstly determined
the angle β that defines the direction along which the slope has a maximum value.

(21) tanβ =
∂w/∂y
∂w/∂x

Further, the maximum slope is evaluated

(22)
(

∂w
∂n

)
max

=

√(
∂w
∂x

)2

+
(

∂w
∂y

)2

.

The maximum bending moment will be

(23) Mmax =
(

ρMδ

h
2

+ρMθ

)√(
∂w
∂x

)2

+
(

∂w
∂y

)2

.

The shear force at the pile head has also the maximum value in the direction
of the maximum slope and can be determined by using the relation

(24) Vmax =
(

ρV δ

h
2

+ρV θ

)√(
∂w
∂x

)2

+
(

∂w
∂y

)2

.
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5. Application

It is considered a square plate (12 m × 12 m), 40 cm in thickness, supported
on 100 piles. The distance between two consecutive piles in both directions is 120
cm.

The whole system being symmetrical with respect to plate diagonals, the
results for only the eight part of the plate are presented.

The contour of the plate is acted by a global force P = 30,000 kN that
produces an uniform displacement along the plate boundaries, equal to 10 mm.
The force is transmitted to the plate through a tubular rigid structure, in vertical
direction.

There are determined the plate deflections (Table 1) by using the finite
differences method. The mesh of the adopted finite differences grid is ∆ = 60
cm (Fig. 3). The deflection graphs along directions 1-1 and 2-2 are represented in
Fig. 4.

Table 1
Nodal Deflections

Node w, [cm] Node w, [cm] Node w, [cm] Node w, [cm] Node w, [cm]
1 1.0000 14 0.5604 27 0.0510 40 0.6854 53 0.5172
2 0.7877 15 0.3397 28 −0.0172 41 0.4561 54 0.4423
3 0.5543 16 0.1693 29 −0.0541 42 0.2794 55 0.3185
4 0.3393 17 0.0153 30 −0.0716 43 0.1501 56 0.2285
5 0.1704 18 −0.0193 31 1.0000 44 0.0642 57 1.0000
6 0.0533 19 −0.0591 32 0.7584 45 0.0147 58 0.6303
7 −0.0196 20 −0.0785 33 0.5517 46 1.0000 59 0.4817
8 −0.0602 21 −0.0865 34 0.3052 47 0.6060 60 0.3787
9 −0.0802 22 1.0000 35 0.1529 48 0.4240 61 1.0000
10 −0.0886 23 0.8292 36 0.0516 49 0.2794 62 0.7374
11 −0.0907 24 0.5627 37 −0.0088 50 0.1718 63 0.5803
12 1.0000 25 0.3331 38 −0.0402 51 0.1012 64 1.0000
13 0.8016 26 0.1639 39 1.0000 52 1.0000 65 0.8513

There are also evaluated the axial forces and bending moments in the most
loaded columns that, as expected, are the columns 65, 58, 47, 32 and 13. For
these columns the axial force, N is around 700 kN, while the bending moment,
My, equals 60 kNm.

It can be pointed out that the piles are subjected to combined compression and
bending, this last effect being enough important.
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36 Mihaela Ibănescu, M. Vrabie and Dan Diaconu-Şotropa
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Fig. 3 – Finite differences mesh 

Fig. 3. – Finite differences mesh.
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Fig. 4. – Deflection graphs.

6. Conclusions

A plate on dense supports that transmit forces proportional to plate linear
displacements and couples proportional to plate rotations, is substituted by
an equivalent continuous medium, which represents a generalization of plates
supported on elastic medium.
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This model can be successfully applied for plates supported on uniformly
distributed piles. In this approach, the interaction between the flexible plate and
the support system is adequately considered.

The design model permits the evaluation not only of axial forces in the piles
but also of bending moments at the head of piles.

The presented numerical example shows that the piles are generally non-
uniformly loaded and the moments at the heads of piles have important values.
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MODEL PENTRU PLĂCI FLEXIBILE REZEMATE PE PILOŢI

(Rezumat)

Se abordează problema elementelor bidimensionale rezemate pe mediu elastic ce este
caracterizat de coeficienţi de rigiditate corespunzători atât deplasărilor liniare cât şi celor
unghiulare. Modelul poate fi adoptat pentru plăcile flexibile (radiere) rezemate pe piloţi,
a căror legătură discretă cu radierul este substituită cu o legătură continuă echivalentă.
Se face şi un studiu de caz, determinându-se săgeţile unui radier flexibil prin metoda
diferenţelor finite.
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