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EXTENDING MOHR’S THEORY OF LIMIT STATES IN
DETERMINING SOIL SEISMIC LOADS ON RETAINING WALLS

BY

N. UNGUREANU, *"ADRIAN MOGA and M. VRABIE

Mohr’s theory concerning the stress limit state and its use in determining the active
and passive soil pressures on retaining walls is being developed. Rankine’s hypothesis,
according to which the pressures on surface elements that are parallel to the free surface
of the ground have a vertical direction; the horizontal acceleration effect which generates
inertia forces in the soil are accounted for. On these grounds the normal and tangential
stresses on planes parallel to the back—of-wall ground surface are being expressed. By using
the intrinsic curve corresponding to the sliding plane and the stresses expressed on these
planes, Mohr’s limit circles, as well as the active and the passive pressures generated by the
seismic event on the retaining wall are determined. The solving process is an essentially
graphic one and allows for the finding of the sliding plane and the main normal stresses as
well as the extreme tangential ones in the points of this plane in which the tension state
has reached the limit.

1. Introduction

Determining the active and passive pressures on the face of the retaining wall, in
terms of seismic action effects, is an important issue in the design of these retaining
structures. The pseudo-static Mononobe Okabe method and its developments are
used to correct the results obtained for the static pressures with an effect equivalent
to the rotation of the gravitational axis by an angle, 6, given by the direction of
the resultant of the gravitation force of the sliding soil prism and its corresponding
inertia force. This way we can obtain the total pressure of soil on the retaining wall.

By extending Rankine’s hypothesis from the static case, we can determine the
active and passive seismic pressures on the retaining wall. The use of limit pressure
states, based on Mohr’s circles, makes possible to determine the sliding planes, the
main normal stresses, the extreme tangential stresses, as well as other useful values.

Extending the method to the seismic case allows for the finding of normal and
tangential stresses in a point on the sliding plane and on planes that are parallel to
the back-of-wall ground surface.
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2. Extending Rankine’s Hypothesis to the Seismic Action Case

Similarly to the static case, the pressures on a point of the soil located on the
plane parallel to the back-of-wall ground surface. are vertical (Fig. 1a).

Let us consider the effect of the soil inertia forces given by the horizontal ac-
celeration on the same sections. From the elementary equilibrium equation we can
determine the normal and tangential forces on sections that are parallel to the back-
of-wall ground surface. in points on the sliding surface, particularly in a point at the
base of the wall in which the sliding plane intersects the retaining surfaces (Fig. 1b).

'f&‘\’\‘v?f"\m\?ff 7
a b
Fig. 1.- Rankine’s hypothesis in the case of seismic action.
Considering a soil column of height h, measured from the ground surface, and
unitary skew section, the pressure, p,, according to Rankine’s hypothesis, is

(1) P = vhcos 3,

which, if there is an overload of intensity ¢, becomes

(2) pv = (Yh + q) cos B,

where: vh is the weight of the column with unitary section in horizontal plane; for the
unitary section, parallel to the ground surface inclined at an angle /3, and amplified
by cos 3; ¢ — the overload intensity in vertical direction, in horizontal plane.

The seismic action on the considered soil prism generates inertia forces. The seis-
mic coefficient in horizontal direction being k) the seismic pressure on the horizontal
as related to that of the acceleration will produce a pressure, ps, on the inclined
unitary surface, which has the expressions:

(3) ph = kpyh cos 3,
respectively:

(4) pr = ka(vh + q) cos 3,
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when the overload g acts on the ground surface.
The normal stress, o, and the tangential stress, 7,,, vields

(5) O, =p,co83+ppsin3, 1, =—p,sin3+ pycosg.

If relations (1),...,(4) are taken into account, then we have:
a) ground surface is free,

(6) 0n="hcos® B+ kpyhcosBsin3: T, = —yhcos 3sin 3 + kyyh cos® 3;
b) ground surface is subjected to overload of intensity ¢.
0 = (7h + q) cos® B + kn(7h + q)cosBsin 3,
7w = —(7vh + q) cos Bsin B + kx(vh + ¢) cos? 3.
Relations (6) and (7) may be also written as:
(8) On = YhGn, 7o = YhTy,

respectively,

(9) on = (Yh+ q)8n, 7o =(vh+ q)Tn,
where
(10) Tn = cos’ 3+ kncos BsinB, T, = —cosBsinf + kj, cos’.

The values 7, and 7, are dimensionless and depend on the slope of the back-of-
wall soil, given by the angle 3 and the seismic location given by kj. These may be
interpreted considering that

o Lo 1-—
(11) vh 4+ q=1 and consequently h = —q,
¥

that is, 7, and 7, are the normal and tangential pressures values at the depth h on
the plane which is parallel to the ground surface.

3. The Intrinsic Curve Corresponding to
Mohr’s Theory on the Limit Stress States

In the points found on the intrinsic curve, the stress state is at its limit. This con-
fines the domain of the admissible stress states. Two situations may be distinguished
in the case of soils namely:

a) The soils arenon-cohesive, between the stresses T and o is satisfied the relation
T = otany and the curve is given by two lines tilted at an intrinsic friction angle,
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¢, of the soil which originate in point O of the system of reference 07, the axis Oc
being the bisecting line of the angle 2¢ (Fig. 2).

b) The soils are cohesive having the intrinsic friction angle, ¢. and cohesion, ¢,
therefore 7 = ¢+ o tan ¢. The intrinsic curve is made up of two lines tilted on both
sides of the axis O with the angle ¢ and which originate in point O’ on the axis Oc
at the distance —s (Fig.3), where

c

(12) B

B tan

The distance, s, has the significance of a normal stress. If ¢ and ¢ are constant and s
is constant too, that is, in any point cohesion acts like a spherical tensor of uniform
stress, s.

T T

a
Fig. 2.- a — The intrinsic curve for non-cohesive
soils; b — the intrinsic curve for cohesive soils.
The intrinsic curve for non-cohesive soils is a particular case of the cohesive ones,
in which ¢ = 0; the internal friction angle is specific to each specific soil and is
determined experimentally, in laboratory.

4. Limit Stress State

The limit stress state in a point may be represented by Mohr’s circle. Any circle
tangent to the intrinsic curve represents a limit stress state.

In the case of a retaining wall, where a limit stress state has been reached in the
soil, that is, the yielding plane has been formed, in a point which might be point A
from the basis of the wall, the stresses o, and 7, on the section through A, parallel
to the ground surface plane, represent a limit stress state and the point M(on, )
will be situated on Mohr’s circle corresponding to yielding.

It is admitted that the soil is cohesive and, by knowing the angle of internal
friction, ¢, and cohesion, ¢, the intrinsic curve can be plotted. From a geometrical
point of view, we need to draw a circle that passes through the point M and is
tangent to the two straight lines.
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There are two solutions and through M will pass two circles tangent to the two
lines which form the intrinsic curve. The small circle corresponds to the active
pressures, while the big one corresponds to the passive ones (Fig.3).
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Fig. 3.~ Representation of limit stress with Mohr's circle.

The line passing through the point M and making the angle 3 with the horizontal
direction (Oc) is parallel to the soil surface plane. This line intersects the circle in
the second point, N, which is called the circle’s pole. This pole has the property
that the direction given by the line which connect a point on the circumference with
the point N is parallel to the section plane on which act the stresses representing
the point’s coordinates. The symmetrical of N against the axis Oo, the point N,
on the circle, determines the limit stresses o,x,, 7.y, on the face of the wall. As a
consequence of equality o,n, = o.~, there follows that:

(13) OoN = OzN, = Tan(Y + 9)
and T,n = Tzn, = kas, therefore
(14) Pas = 3 HKauo(vH + 2q).

The direction of the yielding plane can be obtained by connecting N with T', and
the second plane corresponds to the direction NT;.

The parallel to NT which passes at the basis of the wall and makes the angle a
with the horizontal, represents the trace of the sliding plane.
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The points [ and /1 determine the main planes on which the tangential stresses
are null; oy is the maximum stress, and o;; — the minimum one.

The circle centre has the coordinates ((o +oyr)/2, 0), and the radius is equal to
Tmax; for the active pressures, it results

(15) B= 2P

In the case of non-cohesive soils, for which ¢ = 0, we can draw the circle using 7,
and T, so that to obtain 7,5 = @,n, = K,,. All the previous reasoning stands valid,
with benefic practical consequences. The coeflicients K,, may be easily determined
for different categories of non-cohesive soils.

The cohesive soil can be treated to determine the pressures on the face of the
walls as for a non-cohesive soil with the same internal friction angle as of the cohesive
one. Using the correspondence theorem, the spherical tensor is superposed on the
stress, s, applied on the whole contour of the yielding prism, plus a uniform load of
intensity, s, on the back-of-wall free soil surface.

5. Conclusions

Similarly to the static case, the pressure on a point of the soil located on the plane
parallel to the back-of-wall ground surface, are vertical. The solving is relatively
simple and general for the gravity and assimilated retaining walls. It may be used
in both cohesive and non-cohesive soils. The coefficients of earth pressure may be
determined for both active and passive pressures.

Recewed, May 26, 2005 “Gh.Asachi” Techmieal Unwersity, Jassy,
Departament of Structural Mechanics
and
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EXTINDEREA TEORIEI STARILOR LIMITA DE TENSIUNE
A LUl MOHR_PENTRU DETERMINAREA PRESIUNILOR
SEISMICE ALE PAMANTULUI ASUPRA ZIDURILOR DE SPRIJIN

(Rezumat)

Se dezvolta teoria starilor limita de tensiune a lui Mohr pentru determinarea presiunilor active
si pasive ale pamantului asupra zidurilor de sprijin.

Se foloseste ipoteza lui Rankine, conform cireia presiunile pe elemente de suprafati paralele cu
suprafata libera a terenului au directia verticali; se ia in considerare efectul acceleratiei orizontale,
care genereazi forte de inertie in sol. Pe baza acestora se exprimai tensiunile normale gi tangentiale
pe planuri paralele la suprafata terenului din spatele zidului.

Folosind curba intrinseca corespunzatoare planului de lunecare si tensiunile exprimate pe acest
plan, se determini cercurile lui Mohr limita si presiunile activesi pasive generate de cutremur pe
zidul de sprijin.

Procesul de rezolvare este esential grafic i permite determinarea planului de lunecare precum
si a tensiunilor principale si tangentiale extreme in punctele acestui plan, in care starea de tensiune
este limita.



