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SOME TECHNIQUES FOR SOLVING “STIFF” EQUATIONS

BY
VICTOR-OCTAVIAN ROSCA

The Structural Dynamics involves a large amount of computational effort. Most dy-
namic structural models require the solution of a set of 2"? order differential equations.
There are deve]oged integration techniques for the 1°* order and 274 order differential
equation. The 2" order set of equationis is submitted to a transformation [12] in order to
obtain the first order system.

This paper deals with the “stiff” systems of 1°¢ order differential equations. From the
physical point of view the stiff system consists of two components — one with a fast dynamic
behavior and the other one, slow. The ignoring of the high frequency component may lead
to wrong results.

There are presented some advanced solution methods, criteria for choosing the appro-
priate techniques and a case study.

1. Introduction

From the physical point of view the “stiff” system consists of two components
- one with a fast dynamic behavior and the other one, slow. By ignoring the high
frequency component it is possible to obtain wrong results.

Let us consider the following system of equations [2], where z; and z; are time
(t) variables:

(1) z, = 998z) + 1,998z5, z, = —999z; — 1,999z
and the initial conditions:

(2) 21(0) = 1, 2(0) = 0.

(3) T =2y—2, Ty=-—-Yy+z.
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it results the solution
(4) Ir, = ‘20'! _e—l,DGOP‘ Ty = _e—t +f_'_l'000r_

In [12] there are extensively presented many methods for the solution (i.e. single
step techniques, like Euler, 2nd and 4th order Runge-Kutta, Fehlberg, the Richard-
son extrapolation and the Bulirsch-Stoer method; also multistep methods: Adams-
Bashford, Rosenbrock and Shampine) of the system (1).

If one uses un-avoided the previously mentioned methods to integrate the system
(1), the term that contains the €719 needs an integration time step with a length
of h < 1/1,000 to obtain the stability. This phenomenon occurs even the value of
e~ 1% can be completely neglected for the computation of z; and z, immediately
near the 0 point, as is depicted in the Fig. 1. This is the disadvantage of the “stiff”
systems of equations — we are obliged to follow the solution path by taking into
account the smallest step in order to achieve the stability - although the final solution
can be obtained by an algorithm with a bigger time step.

x(1)

Fig. 1.- The instability phenomenon that occurs during
the integration of “stiff” equations.

In the Fig. 1 it is depicted the solution of such a differential equation, consisting
of two components, one marked with solid line and the other with a dotted line. The
solution stability depends on the dotted line, that converges faster to 0.

2. The Solution Techniques

In the Fig. 2 it is presented the Simulink model of the problem (1) with the solu-
tion provided by (4), by means of the Matlab programming environment. Although
on the entire domain the solution behaves well, in the vicinity of the start point some
numerical problems occur, as it can be noticed in the zoom window of the 0...0.1 s
range.
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Fig. 2.~ The Simulink model.
In order to find out the solution there is considered the case of a single equation
(5) T = —-pz,
where p > 0 is a constant coefficient. The explicit Euler integration scheme for (5)
— with constant time step h — is:
(6) Tnp1 = Tn+ hz, = (1 — ph)z,.

The method becomes unstable if A > 2/p, because in this case |z,| — oc as
n— 00,

The simplest method for the solution in this case is the implicit integration,
in which the right-hand side is evaluated at the new location, z. We apply the
backwards Euler scheme,

(7) Tpp1 = Tp + hit, .,
or:

Q - I'n

{b) :I?ﬂ+1 —

1 +ph’
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The method is unconditionally stable even h — oo, 7,41 — oc and this is the
correct solution of the differential equation; if we analyse the physical/mechanical
phenomenon, the implicit method converges to the real solution - the equilibrium.
This important feature of the implicit methods is applicable only to the linear system,
but also, in the general case, the implicit methods offer a better stability. This is
the case of the implicit methods with the 1°' order of precision. To solve the “stiff”
systems of equations one may use some methods provided with higher orders of
precision. There are three important classes of higher order integration techniques
for the stiff system:

a) Generalizations of the Runge-Kutta method, from which the best is the Rosen-
brock method. The first implementations were carried out by Kaps and Rentrop
[17].

b) Generalizations of the Bulirsch -Stoer[13] method, particularly the
semi-implicit Bader and Deuflhard[19] extrapolation method.

c¢) The predictor-corrector methods, most of them derived from the G e a r [9]
differentiation method.

There will be discussed the implementations of the first two classes. The systems
of equations are depending explicitly on time, ¢, on the right-hand side f(X,1); they
are transformed by adding { to the variable vector

X\ /f
(9) -
t 1

[t is very important to scale correctly the variables from the “stiff” systems. Like
the case of the common systems, it has to be taken a vector, X .., in order to scale
the errors. For instance, to obtain constant errors in a fraction format, X, is scaled
by |X|. In rigid problems often appear components of the solution that decay fast
so can be eliminated. It is advisable to control the relative error from P; a possible
way is to apply a limit value such as

(10) Xeca = max(P, | X]).

The Rosenbrock methods are easily implemented. They are recommended for
the systems that need a medium precision for the solution (¢ + E-4 ... E-5 in the
error criterion) and for small sizes (ten equations). In case of large systems the
semi-implicit extrapolation methods are recommended.

The Rosenbrock method proposes a solution of the form:

(11) X(to+h) = to+ Y ciki,

i=1

where the correction factors, k;, are found by solving the s linear equations system:

(12) (1- 'yhf’)k,' = hf (X(] + f Cl.','jk‘j) -+ hf; IE_E "}','jk_;, (3 = | S)

=1
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By f’ was denominated above the Jacobi matrix. The 7, ¢i. as; and v;; coefficients
are independently constants having fixed values for a given problem. If y = 7;; = 0,
then the method becomes a classical Runge-Kutta one. The equations (12) can be
successively solved for ky, kg, ...

The main element that leads to good result is the algorithm for the automatic
adjustment of the step size. Kaps and Rentrop (op. cil.) proposed an optimized
Runge-Kutta-Fehlberg method that lies on the computation of two estimators for
(11), a “real” X and one of a smaller order, X. that have the coefficients c;,
(1=1, ....5), with different values, where s < s and the k; coefficients are the same.
The difference between X and X leads to the estimation of a round off error, that
can be used as control parameter for the length of the time step. Kaps and Rentrop
showed that the smallest value for s that improves the solution is s=4 and 5=3.
These values lead to a IV*" order numerical method. In order to reduce to minimum
the number of matrix products between the matrices and vectors of the right side of
(12), the equations are re-writen under the form

i—1
(13) gi = 2 viiki + ki

i=1

The equations are now:

([ 1 '
(’Y_h-_ )91=f(xﬂ)-

1 ; ¢
(’}f_h_ )92 = f(Xo+angm)+ 2;191'

(14) 1
€3191 + €3292

1 ) ;
(7_}1 _ ) g3 = f(Xo+ asaigr + azg2) + h

ca g1 + Caaga + C43g3
h

L (71_}1 - f;) 9s = f(Xo+ ang + asngs + asgs) +
Kaps and Rentrop offered two sets of parameters which provide different stability

characteristics. There are provided also other sets, which a very used one is that of

Shampine[18) and is implemented in the Matlab/Simulink Software.

The semi-implicit extrapolation method is applied instead of the Bulirsch-Stoer
method (that partitions the differential equation by the modified midpoint rule) that
doesn’t work for “stiff” problems. Bader and Deuflhard (op. cit.) elaborated a
semi-implicit partition that works very well and leads to an extrapolation just like
in the case of the Bulirsch-Stoer method.

The start point is represented by an implicit formula of the midpoint rule:

(15) Xops = Xoor = 2hf (T2 550,
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Eq. (15) is converted in the semi-implicit form by the linearization of the right
side around of f(X,). The result is the semi-implicit rule of the midpoint

af - af ) af
(16) (1 —hﬁ) Xpp1 = (1 +h—3—?) Xno1 + 2k [f(xn) = ﬁxn] ;

In this method a special value is used for the first step size, which is the value from
the semi-implicit Euler method and a step with a re-calculated step size, where the
last X, is replaced by:

(17) ‘\'n o %{‘Yn-}—l + )(n—-l )-

Bader and Deuflhard demonstrated that the error series involve only even powers
of h. For the simplification of the programming process it is recommended the re-
writing of the above equations using the notation Ay = Xiy; — Xi. Considering
h = H/m, the integration process starts with:

af

(18) Ay = (l~—hﬁ

-1
) h,f(,X(]), X; = XD+ &Q.

Then, for k = 1,...,m — 1, one calculates:

-1
(19)  Ax = Ay +2(1_’1§5¢L) [f(Xe) = Akcal, Xinr = Xi+ A

Finally the expression

of

(20) Ap = (1 == hﬁ) [hf(Xm) - Arﬂ—l] ' Ym = Xn+4An

is obtained.

The sequence for the computation of the time step lengths is
(21) n = 2,6,10,14,22,34, 50, ...,

where each member differs from its predecessor by the smallest multiple of 4 that
makes the ratio of the successive terms be «+ 5/7.
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3. Case-study

We consider a simple case of a SDOF dynamic system in free damped motion,
" with the following law of motion:

(22) T + 100z + 0.9999x = 0,

and initial conditions z(0) = 1, #(0) = 0. For the system with the governing equa-
tion (22) the Simulink model is shown in Fig. 3. The above equation is transformed
from the t-space into s-space by the means of the Laplace transform, where by X(s)
was denoted the Laplace transform of z(t), with X(s) = Lz(t)

(23) s2X(s) — sz(0) — £(0) + 100s X (s) — 100z(0) + 0.9999X (s) = 0.
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Fig. 3.— The oscillation of the “stiff” system solution.
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The transfer function of the system becomes:

1

i) —
(24) H(s) = 577005 70.9999

and the output in the s-space is
(25) X(s) = (s+ 100)H(s).

Applying the inverse Laplace transform one obtains the solution:
(26) z(t) = +1.0001e~%°M — 0.0001e~%%%,

The system response has two components. The first component has a magnitude
of four orders greater than the second one but also decays 10,000 times slower. The
second member has a much smaller magnitude (0.0001) and decays fast. Thus, the
slower response has the predominant role.

Let us focus on the Simulink model from Fig.3, where are depicted the model
and the initial conditions. The Integrator block has the initial condition set on 0 and
the integrator block for displacement has the initial condition value of 1 set on the
Dialog box. In the Simulation Parameters block the start time is set to 0 and stop
time is set to 500. It was used an “z,,” transfer block of the output parameters to
the Matlab workspace. The simulation has as goal the analysis of several integration
algorithms for the 1°* order differential equations, implemented for th solution of
these “stiff” systems.

4, Results. Conclusions

Initially, the simulation was performed with the ODE 15S routine. The result is
very quickly obtained, in few hundreds of seconds (CPU time). The output vectors
to Matlab contain approximately 150 elements, computed at the automatically fixed
time steps. If the model is run by using an ODE 23S integrator, designed on the
basis of the Rosenbrock method, the runtime is reduced to 0.002 s. The results are
presented in the Table 1.

Table 1
The Runtimes of Several Matlab Routines Involved in the Model Analysis
Routine (solver) Time step size Runtime
CPU time, [s]

ODE 23 S (Rosenbrock method) | variable, automatically adaptive 0.002
15§ variable, automatically adaptive 0.06
23 S (stiff systems - trapezoidal) | variable, automatically adaptive 0.06
ODE 45 (Dormand - Prince) variable, automatically adaptive 3.30
ODE 113 (Adams-Bashford) variable, automatically adaptive 4.29
ODE 4 (Runge-Kutta of [V*" 4 s, fixed Error - Divergent Analysis
order)
ODE 4 (idem) 0.01 s, fixed 5.38




Bul. Inst. Polit. Iasi, t. LI (LV), f. 1-2, 2005 39

The Simulink software uses the ODE 45 routine as the implicit integrator (based
on the Dormand - Prince algorithm). After the computation with this routine one
may notice the same output window (in the complete time domain 0, ..., 500 s) like
in te case of ODE 23S. Unlike in the other cases, the run is performed in 3.30 s
and the automatically adjusted time step produces the output vectors with 15,000
elements.

A zooming window of 1 s length was selected, depicted in the bottom-right corner
of the Fig. 3. In comparison to the bottom-left frame, that shows the global response,
one may notice a high frequency component (with a fast dynamic) in the response
trajectory, of a 10~° order magnitude. This proves the fact that the performances of
such a kind of analysis are highly dependent on an adequate solution algorithm.

Finally, a mention regarding the inappropriate choice of an ODE 4 solver with
a fixed time step (which is the 4% order Runge-Kutta algorithm with fixed step)
leads to the collapse. For this model, the setting of a 4 s time step, which is equiva-
lent to 125 time steps for analysis (equal to the number of the used time steps by
the Rosenbrock ODE 23 S algorithm), produces the divergence. The simulation is
stopped and an error message is produced (caused by the singularity). The numerical
experiments evidenced that the Runge-Kutta routine needs a time step of 0.01 s to
attain the convergence.

Receved, June 10, 2005 “Gh.Asachi” Technical University, Jassy,
Department of Structural Mechanics

.
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METODE PENTRU REZOLVAREA ECUATIILOR ,RIGIDE”
(Rezumat)

Dinamica structurilor presupune un volum important de calcu] numeric. Cele mai multe modele
dinamice conduc la rezolvarea unui sistem de ecuatii diferentiale de gradul al doilea. Se utilizeazi pe
scard largd metodele pentru rezolvarea sistemelor de ecuatii diferentiale de gradul I si II. Sistemele
de gradul al doilea se transforma prin [12] intr-un sistem de gradul 1.

Se prezinta cateva metode pentru rezolvarea sistemelor asa-zise ,rigide” (de ordinul 1) de ecuatii
diferentiale. Din punct de vedere fizic un sistem rigid este alcituit din doui componente — una cu
o comportare dinamica rapidi iar cealaltd cu o comportare lentd. Daci se neglijeaza componenta
cu frecventa ridicata atunci pot apare erori numerice de calcul.

Sunt prezentate cateva metode avansate de rezolvare, criterii pentru alegerea unei metode adec-
vate precum gi un studiu de caz.



