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Abstract. Following a procedure similar with those used in case of 

isotropic shallow shells, the governing equations for membrane and bending 
state of thin anisotropic shallow shells are derived. For a convenient formulation 
of governing equations, Hooke's law is used in the form of resultants stress–
strain relations for the entire multy-layered shell, which can be derived on basis 
of the formulation of the k layer (lamina). The equilibrium equations and 
kinematic relations are also used. In the most general case of stress–strain state, a 
coupling between membrane and bending state exists. The obtained equations 
are particularized for laminated composite shallow shells having an 
unsymmetrical stacking sequence, made of orthotropic cross-plied layers. In this 
case the two stress states are uncoupled. Each of the resolvent equations contain 
two unknowns: the in-plane force resultants function, F, and w – the displace-
ment perpendicular on the middle surface of the shell. The system of resolvent 
equations can be solved by analytic way, using the Fourier series developments 
of unknown functions and corresponding boundary conditions. 

 

Key words: shallow shell; anisotropic material; membrane and bending 
state; tensile, coupling and bending stiffnesses; governing equations. 
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1. Introduction 

 
The concept of shallow shell refers to the shells with a large curvature 

radius (i.e. small curvature). One of the criteria used in classifying the shells is 
the ratio between the rise of the vault and the maximum size in plane. From this 
point of view shells may be high (or deep), respectively shallow. Most of the 
researchers include in the category of shallow shells those that satisfy the 
condition (Soare, 1968; Beleş & Soare, 1969; Quatu, 2004): 

 

1,2

1
5

f <
L

,                                                     (1) 

 
where: f is the maximum rise of the middle surface towards the base plane 
surface passing through the support’s points of the shell; L1 , L2 – the maxi-
mum/minimum distance between the supports (or the dimensions of the shell 
following the direction of the coordinates lines). 

In the case of reinforced and prestressed concrete shells there are some 
regulations where the ratio from eq. (1) is limited to 1/4 (Indicativ NP 
119/2006). Also for shells having a hyperbolic paraboloide shape, in 
Mileikovski & Kupar, 1978, the conditions of shallowness, which identify the 
internal geometry of the surface with plane coordinate geometry, are presented. 
Internal geometry of the surface is characterized by the line’s length and the 
angle’s values between them. 

In Romania there is no monograph exclusively dedicated to shallow 
shells, less to anisotropic shallow shells. Chapters or short references to the 
analysis of stress and strain state of isotropic shallow shells can be found in 
Soare, 1968; Beleş & Soare, 1969; Mihăilescu, 1977; Cioclov, 1983. Aspects of 
steel shallow shells’ stability are discussed in Pavel, 1985. Non-linear equations 
of smooth or stiffened with ribs thin shallow shells are discussed in Ginocu & 
Ivan, 1978. 

Internationally can be found a vast literature dedicated to anisotropic 
shallow shells. From the numerous monographs, treatises, papers or research 
reports we first mention the work of S.A. A m b a r t s u m i a n, that uses the 
terminology of “extremely shallow shells” (Ambartsumian, 1956; Ambartsu-
mian, 1991). 

Shallow shells can also be classified in thin or thick, therefore there are 
two theories for shallow shells (Quatu, 2004). 

The first is a classical shallow shell theory (Classical Shallow Shell 
Theory – CSST), and the second is a shear deformation shallow shell theory 
(Shear Deformation Shallow Shell Theory – SDSST). None of them offers a 
reduction regarding the equation’s degree of the shell in comparison with the 
general theories of shell, but they do significantly reduce the terms and lead to a 
simplification of the equations. 
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Shallow shells may have different types of curvature (cylindrical 
circular, spherical, conical, elliptical, hyperbolic paraboloide surface, etc.) as 
well as different types of planforms (rectangular, triangular, trapezoidal, 
circular, elliptical, etc.). 

The appearance and development of new materials (especially of 
laminated composites materials), new constructive technologies and systems of 
making shallow shells implies a continuous effort of perfection and adaptation 
of theories and computation methods. Reducing the complexity of the equations 
as well as the improvement and diversification of the analytical or numerical 
methods to obtain the solutions for the static/dynamic analysis (free or forced 
vibrations) and of stability for anisotropic shallow shells, still make the subject 
of modern research (Wang & Schweizerhof, 1995; Piskunov et al., 2001; 
Semenyuk & Trach, 2010). 

The present work is part of this context and its objectives are 
systematizations and particularizations of the bending theory for thin 
anisotropic shallow shells made of composite materials. 

 
2. Fundamental Equations of Thin Shallow Shells 

 
2.1. Primary Hypotheses 

 
A shallow shell is characterized by its middle surface defined by the 

equation 
 

221 2
2

z
R R Rα αβ β

αβ βα⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
,                                   (2) 

 
where: α, β are the directions of the curvilinear coordinates; Rα , Rβ , Rαβ – the 
radii of curvature in α, β directions and, respectively, the torsion’s curvature 
radius. 

 
Fig. 1 – Middle surface of a shallow shell on a rectangular planform. 
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A middle surface described by eq. (2) is presented in Fig. 1 for positive 
values of the radii of curvature. 

The theory of shallow shells is based on three supplementary 
hypotheses in comparison to the classical theory of shells namely 

1. The radii of curvature are very large compared to the inplane 
displacements, u and v; also the transverse shearing force are smaller than the 
Ri(∂Ni / ∂i) terms 

1;i i
i i

i

u N
V R

R i
∂

= =
∂

,                                       (3) 

where ui is u or v, Vi is any of the shear forces Vα and  Vβ , Ri is Rα , Rβ or Rαβ, Ni 
is Nα , Nβ or Nαβ. The term ∂i indicates the derivative related to any of the 
variables α or β. 

2. The term  z / Ri  may be neglected with respect to 1. 
3. The shell is shallow enough to be represented in the coordinates 

system in the plane (the metric of the surface can be replaced with the metric 
from in plane). 

A differential element of arch from the surface is given by the relation 
 

( ) ( ) ( )2 2 22 2d d ds A Bα β= + ,                                 (4) 
 
where the Lamé parameters of the surface, A and B, are constant in the case of 
rectangular orthotropy. 

The above mentioned hypotheses, together with those of thin shell from 
the classical theory of shells, allow the writing of differential equilibrium 
equations and of geometric equations in orthogonal Cartesian coordinates. 

 
2.2 The Equilibrium Differential Equations 

 
A differential element is detached from the shallow shell, with parallel 

planes to the planes of coordinates, and the following stress resultants forces 
and moments are introduced on it (Fig. 2): 

 

 
Fig. 2 – Differential element with stress resultants force and moments. 



Bul. Inst. Polit. Iaşi, t. LVII (LXI), f. 1, 2011                                        77                                         
 

a) membrane stress resultants (Nx , Ny – tension and compression normal 
forces and Nxy = Nyx – shear forces from the tangent plane to the middle surface); 

b) transverse stress resultants (Mx , My – bending moments, Mxy = Myx – 
twisting moments; Vx , Vy – transverse shear forces). 

The equilibrium conditions of the differential element of the shell, 
under the action of sectional stress resultants and of surface and massic forces, 
lead to the following system of eqs. (Soare, 1968): 

 ( ) ( )0 ; 0 ;yx xy yx N N NN
X a Y b

x y x y
∂ ∂ ∂∂

+ + = + + =
∂ ∂ ∂ ∂

 

2 yx
x xy y

VV
rN sN tN pX qY Z

x y
∂∂

+ + + + = + −
∂ ∂

    (c);            (5) 

 ( ) ( )0 ; 0 ,yx xy yx
x y

M M MM
V d V e

x y x y
∂ ∂ ∂∂

+ − = + − =
∂ ∂ ∂ ∂

 

 
where X, Y are the components of the body forces along the axis from the 
tangent plane, and Z is the density of the body force and from the surface in the 
normal direction (usually, the gravitational direction). 

It must be noted that the inertia forces were not included so the 
equations refer to static equilibrium. 

Eqs. (5 a) and (5 b) are of the membrane state, eqs. (5 d) and (5 e) of the 
bending state and eq. (5 c) is the coupling equation between membrane and 
bending state. In this equation the notations of Monge were used (Soare, 1968; 
Beleş & Soare, 1969) 

 
2 2 2

2 2, , , ,z z z z zp q r s t
x y x yx y
∂ ∂ ∂ ∂ ∂

= = = = =
∂ ∂ ∂ ∂∂ ∂

,                   (6) 

 
which represent the first and quadratic order derivative of middle surface’s 
equation, given explicitly in the form z = f(x, y). 

In the case of shallow shells r, t are normal curvatures and s is the 
torsion curvature. They results directly from the equation of middle surface. 

Eqs. (1 a) and (1 b) are satisfied if the stress resultants forces, Nx , Ny , 
Nxy , are expressed by a function F(x, y), which generates these forces 

 
2 2 2

2 2d ( ) d ( ) ( )x y xy
F F FN X x a ; N Y y b ; N c

x yy x
∂ ∂ ∂

= − = − = −
∂ ∂∂ ∂∫ ∫ .   (7) 

 
The stress resultant forces, Nx , Ny , Nxy , with their expressions from (7), 

will be replaced in eq. (5 c). Also the derivatives of the shear forces from the 
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same equation can be expressed in relation with the derivatives of the moments, 
using eqs. (5 d) and (5 e), and then they are replaced in eq. (5 c) which becomes 

 

( )
2 222 2 2

2 2 2 22 2 , ,xy yx M MMF F Ft s r P x y
x y x yx y x y

∂ ∂∂∂ ∂ ∂
− + + + + = −

∂ ∂ ∂ ∂∂ ∂ ∂ ∂      
(8)  

 
where P(x, y) is an external loading function 
 

( ), d d .P x y pX qY Z r X x t Y y− = + − + +∫ ∫                    (9) 

 
 

2.3. Kinematic Relations 
 

The relations between the strains from membrane state, εx , εy , γxy ,  and 
the displacements u, v from the tangential plane, respectively w in normal 
direction to the middle surface of the shallow shell, have the following form: 
 

( ) ( ) ( )x y xy
u v u v= rw a ; = tw b ; 2sw c
x y y x

ε ε γ∂ ∂ ∂ ∂
− − = + −

∂ ∂ ∂ ∂
.  (10) 

 
First the derivatives 2 2 2 2 2,  ,  x y xyy x x yε ε γ∂ ∂ ∂ ∂ − ∂ ∂ ∂  should be 

calculated and then their addition should be calculated too. A compatibility 
equation results, where the displacements u and v are no longer introduced 

 
2 22 2 2 2

2 2 2 22 .y xyx w w wt s r
x y x yy x x y

ε γε ∂ ∂ ⎛ ⎞∂ ∂ ∂ ∂
+ − = − − +⎜ ⎟

∂ ∂ ∂ ∂∂ ∂ ∂ ∂⎝ ⎠
           (11)  

 
Eqs. (8) and (11) can be applied in the case of shallow shells made of 

elastic material with the constant curvatures r, t, s. 
Further we can utilize different elastic materials using the appropriate 

constitutive equations. 
 

2.4. Constitutive Equations 
 

The case of shells made of anisotropic materials with ordinate 
anisotropy (laminated composites) will be discussed. 

The usual hypotheses for laminated composites consider each layer 
(lamina) made of parallel fibers as incorporated in a matrix material. Thus the 
material of each layer can be considered macroscopically homogeneous, 
orthotropic and linear elastic. Also, it is supposed that the fibers from each layer 
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follow the coordinates of the shallow shell or they form a constant angle with 
these lines of coordinates. 

The most general case is that of the materials that have a coupling 
between the membrane state and bending state, so that between stress resultants 
and strains the following type relations are made: 

 
{ } [ ]{ } [ ]{ } { } [ ]{ } [ ]{ }0 0( );   ( ),N A + B k a M B + D k bε ε= =      (12) 

 
where 

 

{ } { } { } { }
{ } { } { } { }0

, ( );

    , ( );

T T
x y xy x y xy

T T
x y xy x y xy

N N N N M M M M a

k k k k bε ε ε γ

= =

= =
        (13) 

 
{N}, {M} are vectors of the in-plane force resultants (membrane state), respecti-
vely of the moment resultants (bending state); {ε0} – vector of the membrane 
strain from the middle surface; { k } – vector of the curvature changes of the 
middle surface; [A], [B], [D] – matrices of tensile, coupling and bending 
stiffnesses, having the following expressions: 
 

[ ] [ ] [ ]
11 12 16 11 12 16 11 12 16

12 22 26 12 22 26 12 22 26

16 26 66 16 26 66 16 26 66

; ; 
A A A B B B D D D

A A A A B B B B D D D D
A A A B B B D D D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.  (14)  

 

 
Fig. 3 – Cross-sectional view of the multy-layered shell. 

 
The coefficients Aij , Bij , Dij  of the membrane, coupling and bending 

global stiffnesses, depend on the reduced stiffnesses of the laminae, ijQ⎡ ⎤
⎣ ⎦ , and 

on their positions related to the middle surface of the laminate. They results by 
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the sequential integration layer by layer on the thickness, h, of the laminate 
composed of NL layers 

 
( ) ( ) ( ) ( ) ( ) ( )2 2 3 3

1 1 1
1 1 1

1 1; ; ,
2 3

L L LN N N
k k k

ij k k ij k k ij k kij ij ij
k k k

A = Q z z B = Q z z D = Q z z− − −
= = =

− − −∑ ∑ ∑ (15) 

 
where zk  is the distance from the middle surface to the surface of layer k with 
the most distant coordinate z (Fig. 3). 

For an orthotropic layer, the stress–strain relations can be expressed in 
terms of layer’s fiber directions (or local coordinates 1 and 2) as (Fig. 4) 
 

1 11 12 1

2 12 22 2

12 66 12

0
0

0 0

Q Q
Q Q

Q

σ ε
σ ε
τ γ

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

,                            (16) 

 
or in a compact form: 
 

{ } [ ]{ }Q .σ ε=                                            (17) 
 

 
Fig. 4 – Local (1, 2) and global (x, y) coordinates  

of fiber reinforced material. 
 
 

The stress–strain relations for a typical lamina in terms of laminated 
composite shell coordinates become 
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11 12 16

12 22 26

16 26 66

x x

y y

xy xy

Q Q Q

Q Q Q

Q Q Q

σ ε
σ ε
τ γ

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭⎢ ⎥⎣ ⎦

,                              (18) 

or in a more compact presentation 
 

{ } { }Q .σ ε⎡ ⎤= ⎣ ⎦                                            (19) 

The constants ijQ  are the elastic stiffness coefficients, which are found 
from eq. 

 

[ ] [ ][ ]1 ,Q T Q T−⎡ ⎤ =⎣ ⎦                                          (20) 
 
where the transformation of stresses from local coordinates 1, 2 of the lamina to 
the global shell coordinates (α, β or x, y) can be performed using the 
transformation matrix 
 

[ ]

2 2

2 2

2 2

cos sin 2 cos sin

sin cos 2 cos sin

cos sin cos sin cos sin

T

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

.                (21) 

 
From the constitutive eqs. (12), that are similar to those of thin 

anisotropic plates, it can be noticed that the membrane state is characterized by 
the force resultants, [N ], and the strains, {ε0}, connected through matrix [A], 
and the bending state by moment resultants, [M], and curvature changes, [k], 
connected by matrix [D]. The connection between the two tensional states is 
realized by the coupling matrix [B]. 

In the particular case of the symmetric laminates regarding the middle 
surface of the shell, the uncoupling between the two tensional states is realized 
because the coupling matrix [B] becomes null resulting 

 

{ } [ ]{ } { } [ ]{ }0 ( ); ( )N A a M D k bε= = .                  (22) 
 

A more particular case that we’ll further discuss is that of cross plied 
laminates. In this situation the coupling matrix, [B], is zero and the shear is 
uncoupled from tension and the bending from torsion. Matrices [A] and [D] 
become 

[ ] [ ]
11 12 11 12

12 22 12 22

66 66

0 0
0 ( ); 0 ( ).

0 0 0 0

A A B B
A A A a B B B b

A B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (23) 
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Between the stress force resultants and the membrane strains the 
following relation exists: 

 
0
11 11 12
0

2 12 22 2
0

6 66 6

0
0

0 0

xx

y y

xy xy

N N A A
N N A A
N N A

ε ε

ε ε

ε γ

⎧ ⎫=⎧ ⎫= ⎡ ⎤ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥= = =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎣ ⎦⎩ ⎭ ⎪ ⎪⎩ ⎭

,                      (24) 

 
or the inverse form: 
 

22 12
2 2

0 11 22 12 11 22 12
1 1
0 12 22
2 22 2

11 22 12 11 22 120
66

66

0

0

10 0

x x

y y

xyxy

A A
A A A A A A

N N
A A

N N
A A A A A A N N

A

ε ε

ε ε

ε γ

⎡ ⎤
−⎢ ⎥− −⎢ ⎥⎧ ⎫= ⎧ ⎫=

⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪= = − =⎢ ⎥⎨ ⎬ ⎨ ⎬
− −⎢ ⎥⎪ ⎪ ⎪ ⎪== ⎩ ⎭⎪ ⎪ ⎢ ⎥⎩ ⎭

⎢ ⎥
⎢ ⎥⎣ ⎦

.      (25) 

 
The notations used in technique, 
  

2 2
11 22 12 11 22 12

1 2
22 11

6612 12
21 12 12

11 22

; ;

; ; ,

x y

yx xy xy

A A A A A A
E E E E

hA hA
AA A

G G
A A h

ν ν ν ν

− −
= = = =

= = = = = =

            (26) 

 
are introduced, where: Ei , Gij , νij , (i = 1, 2 or i = x, y) are moduli of longitudinal 
elasticity (Young’s moduli), shear moduli and Poisson’s coefficients of the 
composite laminated material with h thickness. 

With the notations from the technique of the elastic constants, the 
strains from eq. (25) can be written according to the membrane force resultants, 

 

; ;yx y xy x y xyx
x y xy

x y x y xy

N N N NN
E h E h E h E h G h

ν ν
ε ε γ= − = − + = .               (27) 

 
In the case of the analysed material, the uncoupling extends between the 

normal stresses from traction, respectively bending and tangential stresses from 
shear, respectively torsion. Eq. (22 b) taking into account (13 b) and (23 b), 
becomes 
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1 11 12

2 12 22

6 66

0
0

0 0

x x

y y

xy xy

M M D D k
M M D D k
M M D k

⎧ ⎫ ⎧ ⎫= ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥= ⎣ ⎦⎩ ⎭ ⎩ ⎭

,                          (28) 

 
or in algebraic form 
 

11 12 12 22 66, ,x x y y x y xy xyM D k D k M D k D k M D k= + = + = ,          (29) 
 
where 
 

2 2 2

2 2; ; 2x y xy
w w wk k k

x yx y
∂ ∂ ∂

= − = − = −
∂ ∂∂ ∂

.                      (30) 
 
 

3. Resolvent Equations and Solutions 
 
The expressions of the moments from (29) are derived and introduced 

in (8). Also the expressions of strains from (27) are derived and they are 
introduced in the compatibility eq. (11). After calculation and systematization 
we obtain two differential equations in the unknowns F and w namely 

 

( )
2 2 2 4 4 4

11 12 66 222 2 4 2 2 42 2 2 ,F F F w w wt s r D D D D Z
x yx y x x y y

∂ ∂ ∂ ∂ ∂ ∂
− + − − + − = −

∂ ∂∂ ∂ ∂ ∂ ∂ ∂
(31) 

 
4 4 4

4 2 2 4

2 2 2

2 2

1 1 1

       2 0.

xy yx

y x y xy x

F F F
E E E G Ex x y y

w w wh t s r
x yx y

ν ν⎛ ⎞∂ ∂ ∂
− + − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂

+ − + =⎜ ⎟
∂ ∂∂ ∂⎝ ⎠

               (32) 

 
In the right side of (31) only the gravitational component of the load, Z, 

was kept. 
The integration of this system of differential equations with partial 

derivatives can be performed from an analytic point of view, using solutions 
based on expansions in Fourier series, for particular cases of boundary 
conditions. The solution can be taken under the form 

 

( ) ( ) ( )

( ) ( ) ( )

0

0

cos cos ( ),

sin sin   ( ),

mn m n
m n

mn m n
m n

F x, y F x y a

w x, y w x y b

α α

α α

=

=

∑∑
∑∑

                        (33) 

where 
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( ), , , 1, 2, 3m n
m n m n ...
a b
π πα α= = = ,                           (34) 

 
and the domain occupied by the shallow shell is rectangular, with a and b sides 
parallel with the coordinate axis x and y. 

The solutions (33) must satisfy the boundary conditions, from which 
results the coefficients, 0

mnF , respectively, 0
mnw . The boundary conditions also 

include derivatives of these functions, resulting from the supporting types of the 
shallow shell on the contour. Numerical solutions of the system can also be 
obtained using the finite difference method.  
 

4. Conclusions 
 
The specific hypotheses of the shallow shell’s theory lead to the 

reduction of some terms and the simplifying of resolvent equations, without 
reducing the degree of these equations compared to those from the general 
theory of shells. 

Material or structural anisotropy, present at shells of laminated 
composites, represents a difficulty factor in establishing the resolvent equations 
and their solutions. The complexity of the equations is increased by the 
anisotropic coupling between the membrane’s stresses and the bending’s 
stresses through the coupling matrix [B] = [Bij]. 

In particularly cases of arrangement of the layers, as in the case of 
symmetric distribution from the middle surface of the laminate, matrix [B] 
becomes null and so the stress resultants from the two tensional states are 
uncoupled. The same happens with non-symmetrical laminates but with cross-
plied fibers. For this stacking sequence of lamination, following the path from 
isotropic shells, two resolvent equations were obtained, having as unknowns a 
function of stress resultants, F, and the function of normal displacement, w. In 
eq. (31) the bending stiffnesses, Dij , (i, j = 1, 2, 6), of the laminate appear and in 
eq.(32) the technical elastic constants of an equivalent monolayer orthotropic 
material appear. The computation relations of these characteristics according to 
the elastic constants of lamellae’s components were deduced. 

The obtained system of resolvent equations can be analytically solved 
based on Fourier expansions, or numerically, using the finite difference method. 
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UNELE ASPECTE PRIVIND ECUAŢIILE DE GUVERNARE ALE PLĂCILOR 

CURBE SUBŢIRI ANIZOTROPE PLEOŞTITE 
 

(Rezumat) 
 
Urmând un procedeu similar celui utilizat la plăci curbe izotrope pleoştite, se 

deduc ecuaţiile de guvernare pentru starea de membrană şi de încovoiere a plăcilor 
curbe subţiri pleoştite anizotrope. Pentru o formulare convenabilă a ecuaţiilor de 
guvernare este utilizată legea lui Hooke sub forma relaţiilor dintre rezultantele 
tensiunilor şi deformaţii pentru întreaga învelitoare multistrat, care pot fi determinate pe 
baza formulării pentru un strat (lamină) oarecare, k. Sunt utilizate, de asemenea, 
ecuaţiile de echilibru şi relaţiile cinematice. În cel mai general caz al stării de tensiune–
deformaţie, există o cuplare între starea de membrană şi starea de încovoiere. Ecuaţiile 
obţinute sunt particularizate pentru învelitori pleoştite compozite laminate, având o 
secvenţă de stivuire nesimetrică, realizate din straturi ortotrope încrucişate. În acest caz 
cele două stări de tensiune sunt decuplate. Fiecare dintre ecuaţiile rezolvente conţine 
două necunoscute: funcţia de eforturi din plan, F, şi w – deplasarea normală pe suprafaţa 
mediană a învelitorii. Sistemul de ecuaţii rezolvente poate fi soluţionat pe cale analitică, 
utilizând dezvoltările în serie Fourier ale funcţiilor necunoscute şi condiţii pe contur 
corespunzătoare. 


