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Abstract. Computing with neural networks ranges between engineering 

and artificial intelligence. It uses classical engineering mathematical techniques 
and heuristic methods specific for Artificial Intelligence. This paperwork 
illustrates the way of using neural networks for improving the computing method 
by increasing the accuracy in design the concrete slabs from airport 
infrastructure. The results obtained using the models developed with the method 
of finite element were used for creating neural networks (one for each type of 
landing gear), simulating the function H=f(P,K,σt) to design the new cement 
concrete slabs. The use of neural networks for the interpolations of functions to 
dimension the slabs proved an increase of result accuracy compared to the 
reading of nomograms, previously carried out, as well as the possibility of 
computing the variable concrete slab thickness, other than the one considered for 
the nomograms. 
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1. Introduction 
 
The Artificial Intelligence using genetic algorithms, neural networks 

and fuzzy systems, provides intelligence simulation techniques in decision 
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making, evolution and “training” the computer. Designing, planning and 
management can be improved using intelligent methods. 

The computation with neural networks is considered between 
engineering and Artificial Intelligence. It uses classical engineering 
mathematical techniques as well as heuristic methods specific to Artificial 
Intelligence.  

Some of the most important characteristics of neural networks, by 
which the other traditional computing systems are differentiated, are  

a) Training based on examples (from experiments).  
b) Associative distributed memory. 
c) Tolerance to errors. 
d) Recognition of models. 
e) Synthesis capacity. 
The neural networks represent a computing alternative that proved to be 

useful in approximation of functions, recognition of models and their 
classification, signal processing, identification and control of systems, prognosis 
of dynamic systems, clustering (grouping of models according to similarities). 

Generalizations may be obtained ranging from small structures 
(testable, measurable, and verifiable) to large structures (difficult to test and 
quantify). Neural networks can reduce the time of analysis or designing process 
and can lead to its optimization. 

 
2. Artificial Neural Networks  

 
A neuron is an entire informational process that is fundamental for the 

operations  of  neural  networks. In Fig. 1  it is presented the block diagram of an  
 
 

 
Fig. 1 – Model of an artificial neuron (block diagram)  

(Matcovschi & Păstrăvanu, 2008). 
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artificial neuron with n inputs, noted x1 ,...,xn , and one output, noted y. On this 
diagram, three basic elements of the neuron model (Haykin, 1999) may be 
identified 

a) Synaptic weight.  
b) Input operator. 
c) Activation function (transfer) 

with 
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where:  xi is the input signal through connection i; wi – the synaptic weight of 
the input signal, i; b – the threshold value or bias; and 
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with σ  – the activation function. 
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The transfer )(xfy =  is weighted by the synaptic weights w, (w∈ 1×n) 
and movement (bias) b (b∈ ). 

An artificial neural network, briefly called neural network, represents a 
group of artificial neurons linked by connections associated with intensity and a 
circulation direction of information. The use of artificial neurons as basic 
elements of a network was performed for the first time by F. Rosenblatt (1957). 

The architecture of a neural network refers to the way in which the 
functional units are placed (topology) and interconnected (connectivity).  

The way in which the neurons of a network are structured is directly 
related to the training algorithm (learning). 

 
3. Transportation Issues Solved with Neural Networks 

 
In 1994 Meier and Rix introduced the computation methodology with 

neural networks for designing the road pavement adding a real time analysis and 
a high accuracy. 

In 1995 Williams and Gucunski used a backpropagation neural network 
(NN) for reversing the results of the evaluation test of the elasticity modulus 
and the thickness of the soil layer and asphaltic pavement in the Seismic 
Spectral Analysis of Surface Waves. 

Two issues have been addressed   
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a) Structural computation – road structure thickness with an improved 
accuracy (Saltan, 2002), estimation of elasticity modulus of component layers 
(Gopalakrishnan, 2008; Lee et al., 1998; Ceylan et al., 2008), monitoring the 
maintenance and repair activities of damaged road structures (Alsugair, 1998), 
analysis of road infrastructure based on non-destructive tests with deflectometer 
(FWD) (Goktepe, 2006).  

b) Traffic management – detecting the traffic incidents on the highways 
(urban or interurban) for improving the transport system and the prognosis of 
road traffic for the management of traffic jams (Karim & Adeli, 2002, 2003; 
Jiang & Adeli, 2005), designing an advanced system of decisional support for 
the effective management of traffic in working areas (Jiang & Adeli, 2004), 
designing a model for prognosis of payment-risk on the asphalting process 
(payment adapted to the various levels of quality and possibility of identifying 
the responsible factors for payment adjustment (Manik et al., 2008). 

 
4. Case Study on the Rigid Runway Structure Design 

 
The evolution of air traffic (intensity, types of aircrafts) requires the 

design with a high confidence level for airport infrastructure, because the 
strengthening due to a design error as slab thickness underestimation goes to the 
interruption of service for a number of runways/airfields. 

The airport road structures are mainly designed as rigid slabs.  
The design criterion of airport rigid structures is represented by the 

allowable flexural tensile stress of the cement concrete (σt_adm). Generally, the 
design of concrete slabs for airport runways is carried out based on nomograms 
drawn up for various types of landing gears and load cases. From these 
diagrams the concrete slab thickness results from the maximum stress in the 
slab, the load case and the soil reaction coefficient (K) at the footing level. 

 
4.1 . Computing Parameters. Computing Hypothesis 

 
The analysis of computing parameters was carried out by various 

simulations of cement concrete slab behaviour. The simulations were performed 
on models made with Finite Elements (FE), in variable composition of the 
airport structures. 

The airfield strips are sectioned in slabs to provide contraction – ben-
ding and expansion joints.  

The study regarding the influence of loading positions leads to the 
conclusion that loading at the midpoint of the length is the most 
disadvantageous one if the uniform resting condition of the slab is fulfilled.  

The hypothesis of the structure working as an isolated slab is explained 
as in time of service the friction between the contact surfaces at the contraction 
– bending joints decreases due to the wear of the two slabs under the traffic 
action as well as under thermal cycles. 



 Bul. Inst. Polit. Iaşi, t. LVII (LXI), f. 3, 2011 161 

The FE model prevents over-dimensioning, the values of σt (flexural 
tensile stress due to traffic loading) being smaller than those resulted by 
Westergaard-Ioannides formulas. 

The influence of K value on the σt value explains the necessity of 
foundation layers with a relatively high bearing capacity, providing also the 
uniform resting conditions of the slabs. 

The following parameters were taken into account when creating the 
nomograms, based on the conclusions of the previously carried out studies:  

a) Dynamic elasticity modulus of concrete: E = 30,000 MPa. 
b) Poisson’s coefficient: ν = 0.15. 
c) Concrete grade: BcR 5.0. 
d) Plane dimensions of the slab: L × l = 7.00 × 5.00 m. 
The landing gears are standard represented by the four categories 

namely, simple, dual, boogie and tandem gear (Zarojanu et al., 2009). 
The design load is the load on the main landing gear depending on the 

mass during takeoff of the reference aircraft (contractual/general dimensioning 
method) or the masses at takeoff/landing of all the aircrafts in service on the 
aerodrome (optimized dimensioning method). 

The reference/critical aircrafts are represented by the aircraft that 
requires the largest slab thickness. The computing hypotheses for this study are 
(Sci. Contract...,  an???) 

a) the loading position of the slab is the one for which the marks are 
tangent to the length of the slab with values from Table 1; 

b) the loadings are transmitted by landing gears as rectangular marks;  
c) the reaction modulus value (K) at the top of the foundation layer is 

obtained depending on the value of K0 (at the level of the foundation soil), the 
thickness (H) and the foundation layer composition; the K values are considered 
as being: 15; 30; 50; 70; 100; 150 MN/m3; 

 d) the thickness of concrete slab varies between 15 to 55 cm with a 
tolerance of 5 cm. 

Table 1 
 The Variation Domain of Loading on the Landing Gears  

Loading on the main landing gear, P, [kN] 
Simple 50 / 100 / 200 / 300 / 400 
Dual  75 / 175 / 275 / 350 / 425 

Boogie 600 / 750 / 900 / 1,050 
Tandem 250 / 300 / 377 

 
The values of the flexural tensile stress in the concrete slab (σt) are 

computed using FE models. 
For the analysis of 3-D stresses and deformations in the runway system 

– infrastructure, the package with FE ALGOR (developed by Algor Inc., 
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Pittsburg USA) were used including a series of linear-elastic mathematical 
models. 

The system is made of two sub-systems: infrastructure (foundation soil 
+ foundation) and concrete slabs. The system presents geometrical and mecha-
nical symmetry as well as symmetry of loads and develops in particular models 
for each type of landing gear (simple, dual, boogie, tandem) and for each 
loading class. 

A class is composed of models with various thicknesses for the runway 
slab, with the value set of the reaction modulus and another value set of E 
modulus of slab elasticity. 

The nomograms σt = f (P, K, H); H = f (σt , P, K). are drawn for each of 
the values considered in the computation, K = 15, 30, 50, 70, 100, 150 MN/m3, 
and standard P-values corresponding to each landing gear (Designing Norms..., 
1999). 

For values intermediary to those used in simulations, interpolation was 
adopted using correlations of fourth degree polynomial functions 

 
y = a0 + a1x + a2x2 + a3x3 + a4x4, 

 
σt = f(P), H, K – constant values; σt = f(H), P, K – constant values; σt = f(K), P, 
H – constant values. The interpolations allow the variation of a single parameter 
(P, H or K). 
 

4.2. Data Interpolation with Neural Networks 
 

The objective of the next step in this study is to create simulation 
models of variation of some non-linear functions aiming at their interpolation 
for values not included in the previous calculation but related to real cases. 

The solution consists in an approximation algorithm of non-linear 
functions. For solving the approximation problems, it is generally used a feed 
forward back propagation static NN (multi-layer perceptron) with supervized 
training. 

 
a) Neural Networks Parameters 

 
It is developed a correspondence of data (the previously studied 

parameters) calculated in the simulation with the FE of the function H = f(P, K, 
σt). The following input parameters of the neural networks are used: 

P – load value transmitted by the specified landing gear;  
K – reaction modulus (coefficient of soil reaction); 
σt  - flexural tensile stress in the cement concrete slab. 
The output of the neural network is H – thickness of airport cement 

concrete slab. 
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b) Creating and Using Neural Networks 

 
NN have been designed with the MATLAB program package together 

with the library Neural Networks Toolbox created by MathWorks.  
A feed forward back propagation networks is carried out with three 

neurons on the input layer and one neuron on the output layer of the network 
(Fig. 2). Many variants of neural networks were made, where the number of 
neurons on the hidden layer varied. It was created a model for each type of 
landing gear and various options for NN were tested (Table 2). 

Thus, data sets such as 270 sets for simple type landing gear, 270 sets 
for dual, 164 sets for tandem and 432 sets for boogie type landing gear were 
considered necessary for creating the NN. From the available sets of data, 60% 
were used for network training, 20% for validation and 20% for network testing.  

The Levenberg-Marquardt algorithm was selected as the network 
training algorithm. This proved to carry out the lowest variations of computed 
values compared to the target values of the network (under 1.5% considered as 
acceptable). 

 

 
Fig. 2 – Topology of feed forward back propagation networks used  

for dimensioning new road structures.  

 
After training (Fig. 3), validation and testing of neural networks as the 

effective usage of networks was carried out. 
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Table 2 
 Structures and Performances of Neural Networks 

Landing 
gear 
type 

Network 
config. / 

activation 
functions 

Learning / 
training 

algorithm 

No. 
training 
epochs 

Mean 
squared 

error MSE 

Normalized 
MSE 

R correlation 
coefficient 

Simple 
3-10-1 

logsig - tansig 
- purelin 

LM / GD 91 2.961314 
e-002 

3.343025 
e-003 0.99833 

Dual 
3-20-1 

tansig - tansig 
- purelin 

LM / GDM 47 7.251054 
e-002 

4.251819 
e-004 0.99979 

Bogie 
3-20-1  

tansig - tansig 
- purelin 

LM / GD 145 5.862828 
e-002 

3.738345 
e-004 0.99981 

Tandem 
3-10-1 

logsig - tansig 
- purelin 

LM / GDM 42 
 

1.521579 
e-001 

8.421127 
e-004 

0.99958 
 

LM = Levenberg-Marquardt algorithm; GD = gradient descent method; GDM = gradient descent 
method with moment. 

 

 
Fig. 3 – Training-validation-testing evolution (cross-validation) for 

boogie type landing gear. 
 

The network training was carried out with standard values for P – loading 
transmitted by the specified landing gear, K – reaction modulus at the top of the 
foundation layer. The value of H – slab thickness, for various values of P, K and 
σt (flexural tensile stress) (Figs. 4,...,6) are provided accurately due to the appro-
ximation function using the NN.  
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Fig. 4 – Nomogram for the dual type of landing gear. 
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Fig. 5 – Nomogram for the boogie type of 
landing gear. 

Fig. 6 – Nomogram for the tandem type of 
landing gear. 

 
 

5. Conclusions 
 

From the studies carried out in the last two decades there is a strong 
focus on using neural networks in design works for civil engineering and their 
utility was demonstrated also on the construction site.  

Neural networks do not replace the classical calculation methods, but 
are complementary to them.  

They come with a good modelling in fields where classical simulations 
(finite elements, finite differences, etc.) would require large resources of 
computation. 
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Table 3 
Comparison of Values Obtained from Nomograms versus  

Approximations of Neural Networks 

H, [cm] H 
differences 

H  
differences P, [tf] K  

kN/m3 
σt 

MPa Diagram 
reading 

NN 
computation Rounding D–RN % 

Simple 
  5     15 2.20 23.0 23.4881 23.5 –0.50 –2.128 
  5   20 3.15 * 18.4434 18.5   
  5   30 1.60 25.0 26.6778 26.7 –1.70 –6.367 
  5   40 5.00 * 12.2603 12.3   
  5   70 1.70 23.9 23.5841 23.6   0.30   1.271 
  5 100 3.00 ≅15* 15.8974 15.9   
  5 110 2.30 * 18.7352 18.7   
  5 120 2.90 * 15.9989 16.0   
  5 140 2.00 * 20.0359 20.1   
  5 150 2.70 ≅* 20.8070 20.9   
20   35 4.15 * 28.8413 28.9   
20   50 2.75 35.8 35.9042 36.0 –0.20 –0.555 
20   90 3.60 * 27.8283 27.9   
20 100 3.90 26.0 25.9214 26.0   0.00   0.000 
20 130 2.30 * 35.6739 35.7   
20 150 4.20 23.4 22.7961 22.8   0.60   2.632 
25   75 5.20 * 24.5454 24.8   
35 120 2.10 * 49.4827 49.5   
40   50 2.20 >55.0* 56.8907 56.9   
40   55 4.60 * 33.5098 33.6   
40   70 5.20 30 29.3753 29.4   0.60   2.041 
40   85 3.10 * 42.0378 42.1   
40 100 4.40 31.7 30.9314 31.0   0.70   2.258 
40 115 5.30 * 26.1192 26.2   
40 130 2.75 * 42.7305 42.8   
40 150 2.50 45.5 44.6204 44.7   0.80   1.790 

Dual 
7.5   15 3.10 ≅* 20.4577 20.5   
7.5   25 1.80 * 27.2955 27.3   
7.5   30 4.00 ≅* 15.6018 15.7   
7.5 100 3.80 ≅* 14.7081 14.8   
7.5 125 2.30 * 18.6197 18.7   
7.5 150 1.65 22.0 22.9211 23.0 –1.00 –4.348 
17.5 150 3.80 19.8 19.4017 19.5   0.30   1.538 
25   75 1.60 *     50.102 50.2   
35   90 4.20 * 31.4836 31.5   

42.5   30 2.70 53.6 53.9343 54.0 –0.40 –0.741 
42.5   90 3.55 * 39.1873 39.2   
42.5 130 4.45 * 31.5638 31.6   
* values that cannot be read on diagrams 
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The artificial neural network offers a very good solving of direct 
mapping of non-linear problems containing many independent variables, a class 
of problems common to engineering.  

This approach offers solutions with a higher accuracy than the 
alternative modelling techniques and need less requirements for modelling, 
from the point of view of knowing the form of the function to be represented.  

By approaching the problem using neural networks, the following 
benefits have been obtained (Table 3): 

a) improvement of the design methodology of airport rigid structures, 
increasing the accuracy of the H thickness of the concrete slab; 

b) increase of the confidence level of the results compared to the 
reading of nomograms, limited to a reduced number of values of calculation 
parameters; 

c) possibility of introducing values of calculation parameters for larger 
domains of variation in order to elaborate the official design method. 
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DIMENSIONAREA STRUCTURILOR RUTIERE RIGIDE AEROPORTUARE CU 
AJUTORUL REŢELELOR NEURONALE 

 
(Rezumat) 

 
Calculul cu reţele neuronale se situează între inginerie şi Inteligenţă Artificială. 

Foloseşte tehnici matematice inginereşti clasice, dar şi metode euristice specifice 
Inteligenţei Artificiale. Lucrarea ilustrează modul de utilizare a reţelelor neuronale 
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pentru îmbunătăţirea metodei de calcul prin sporirea preciziei în dimensionarea dalelor 
din beton din infrastructura aeroportuară. Rezultatele obţinute după simulările 
modelelor create cu metoda elementului finit au fost utilizate pentru realizarea unor 
reţele neuronale (câte una pentru fiecare aterizor tip), care simulează funcţia H = f(P, K, 
σt) în cazul dimensionării dalelor din beton de ciment noi. Utilizarea reţelelor neuronale 
pentru interpolările funcţiilor folosite pentru dimensionarea dalelor a demonstrat o 
creştere a preciziei rezultatelor faţă de citirea diagramelor de dimensionare, realizate 
anterior, cât şi posibilitatea calculării grosimii dalei de beton pentru alte valori ale 
variabilelor decât cele luate în considerare de simulările efectuate. 


