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Abstract. The problem of dynamic stability is substantially more 

complex than the buckling analysis of a shell subjected to static loads. 
The fundamental aim of this paper is to present criteria for determining the 
critical load of dynamic buckling of thin shell. Another purpose of establishing 
such criteria is to guide engineers scientists and researchers dealing with such 
problems, for a better comparison verification and a validation of their 
experimental or numerical results. To illustrate the application of these criteria, 
two examples have been studied. 
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1. Introduction 
 

Buckling is a phenomenon of instability which can be observed 
specifically for thin slender structures of low bending stiffness subjected to 
compressive stress, beyond a certain value. The applied load leads to a 
significant change in the shape of the structure that results in a gradual or 
sudden onset of wrinkles or ripples. 
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Thin shells are often subjected to structural instabilities more or less 
"catastrophic". Thus, the design of shell structures requires at first to have an 
understanding of these instabilities. 

 
 

2. Dynamic Instability 
 
The area of “dynamic” instability of structures has been the subject of 

numerous research studies over the past 40 years (Sahu & Datta, 2007). 
Similarly to the static analysis of thin shells (Touati & Barros, 2008) and the 
analysis of non-linearities of the problem (Moussaoui & Benamar, 2002), the 
choice of stability criteria is an essential element. In 1788 Lagrange proposed a 
criteria called energy criterion, where the minimum potential energy was 
refered to be a stable equilibrium. If this energy is a maximum then the 
equilibrium is considered as being unstable. This criteria has been rejected but 
was extended afterwards by Dirichlet in 1846 to cases of bounded disturbances. 
This requirement does not apply to cases such as: dynamic loads, non-
conservative loads or to large displacements. Notice that the term dynamic 
stability (Simitses, 1987) encompasses a large number of common cases for 
structural thin shells under impacts, periodical loads or non-periodical 
earthquakes (to name a few). 

2.1. Parametric Resonance 

In the case of a simple (mass-spring) oscillator, resonance occurs when 
the structure is excited with a harmonic force with the natural frequency. A 
force excitation collinear with the motion of the mass, causes the oscillation of 
the mass with a continuous increase in displacements. The parametric resonance 
is a similar phenomenon but the difference is that the force exciter causes 
resonance in a second vibration mode or in another mode with natural frequency 
rather different from that directly excited by the exciting force. The first 
observation of parametric resonance is attributed to Faraday in 1831. 

When the load excitation is periodic, the problem reduces to a system of 
equations of the Mathieu-Hill type as shown by Budiansky (1965). The 
resolution of the problem determines the areas of instability according to the 
theorem of Mathieu-Hill. Significant studies were conducted on the parametric 
resonance of cylindrical thin shells by Yao (1963, 1965). 

2.2. Dynamic Buckling (Dynamic Fast Loading) 

A second type of dynamic instability refers to structures with post-
critical unstable behavior, of the type snap-trough, subjected to very fast time-
varying loads (explosions, crashes, ...). The dynamic instability appears when a 
slight disturbance arises on a structure under dynamic fast loading. The latter 
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initiates a major deformation shift from the original undisturbed position. This 
phenomenon is characterized by: a) a finite jump from an initial stable state to a 
final stable state; or b) by an unstable infinite jump. Several approaches can be 
used to calculate the instability conditions for this type of problem (Huyan, 
1996). 

a) Total Energy-Phase Plane Approach (Hoff & Bruce, 1954) 

The phase-plane is drawn in a displacement–velocity coordinate system 
(u, ù) as shown in Fig. 1. When the loading parameters are small, the stable 
movements describing closed paths are limited and focused around the solution 
of a static equilibrium (Fig. 1 a). When the loading factor increases, a value is 
reached at which a movement of the structure gets away from the pole without 
any oscillation around him. In this case (Fig. 1 b) the structural system is in a 
condition of instability to which corresponds a critical load value. 

 

 
     a                                                  b 

Fig. 1 – Phase plane: a – stable motion; b – unstable motion.  
 

b) Total Potential Energy Approach (Simitses, 1965) 

The process of transfer of potential energy into kinetic energy reflects 
the phenomenon of instability of an elastic system. When the value of the 
critical load factor is reached then a steady state, represented by a local 
minimum point of the curve of the potential energy, changes position and 
moves to another local minimum along the same curve of the potential energy. 
This movement of the steady state representative point releases potential energy 
accompanied by large deformations in bending, and the potential energy 
released is transformed into kinetic energy, which in turn accelerates the 
preceding deflections. 

The Fig. 2 a shows the  qualitative  variation  of  the potential energy 
function with respect to degree of freedom, up , and the static equilibrium is 
represented by the point B of the energy curve. If the applied load factor, λ, is 
less than the dynamic buckling load factor, λcr, then the structural movement 
oscillates harmonically around the point O. Thus, an oscillation measure is 
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represented by the distance AC; the maximum amplitude is represented by the 
distance OC; the dynamic movement occurs between the two limits, A and C. 
This latest corresponds to a dynamic stability situation. 

The complementary figure (Fig. 2 b) shows the qualitative variation of 
the potential energy function when the applied load factor, λ, tends towards the 
dynamic buckling load factor, λcr. In fact when the movement oscillates around 
the point O, at point C the total energy at this level corresponds to the buckling 
load factor of the dynamic movement. In this situation the movement escapes 
from point O to point C and becomes uncontrollable (since the representative 
point C no longer corresponds to a local minimum) and an unlimited dynamic 
instability occurs by buckling. 

 
 

           

                              a                                                          b 

Fig. 2 – Variation of potential energy as a function of some displacement variable: 
a – stable dynamic movement; b – unstable dynamic movement 

 
The curve of the displacement response over time, for each value of the 

applied load, λ (λ < λcr), oscillates harmonically around the static equilibrium 
position  of  maximum  amplitude  OC  as  shown  in  Fig. 2 a. The offset of the  

 
Fig. 3 – Critical load factor at the intersection of the two curves 

of static and dynamic equilibrium. 
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static equilibrium curve for a distance equal to the corresponding maximum 
amplitude OC, for every load factor, λ, gives the curve of dynamic equilibrium. 
The intersection of these two curves plotted simultaneously, determines the 
value of  the  dynamic buckling load factor, λcr ,  for  the maximum  vibration 
amplitude OC, as shown in Fig. 3. 

 
c) Equations of Motion Approach (Budiansky & Roth (1962)) 

This criteria is applied with the knowledge of the response calculated 
for different loading parameters from the numerical solution of the motion eqs.  
By drawing the curve of some selected displacement vs. time, while varying the 
intensity of the applied load, a jump of the curve is found from the curves drawn 
for neighbouring values. Under the criteria of Budiansky & Roth (1962), a 
particular value of the load causing this remarkable leap corresponds to the 
critical value of dynamic buckling, as shown in Fig. 4 a. 

A refinement of this criteria was proposed by Ari Gur & Simonetta 
(1997) to be applied in the case of existence of smaller peaks on deflections 
curves due to pulses of very short duration with very high intensities. In this 
case the dynamic instability corresponds to a reduction in the peak of the 
maximum deflection caused by a slight increase in load intensity as shown in 
Fig. 4 b. 

 

 
                                     a                                                                    b 

Fig. 4 – Critical load: a – criteria of Budiansky & Roth;  
b – criteria of Ari Gur & Simonetta.  

                                                                               

d) Criteria of two Dynamic Curves (Chamis & Abumeri (2005)) 

The principle of this criteria is based purely on geometry curves which 
rely on updating values after each step of time (Δt) by solving the eq. of 
dynamic equilibrium. Then the critical load is determined from a solution 
among obtained eigenvalues, that generally look like the ones given in Fig. 5. 
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This figure shows that for every value of positive dynamic load there is a 
buckling load whose variation decreases monotonically, until it reachs a value 
for which occurs an increase of the dynamical load in over time at almost 
constant buckling load.  

 
Fig. 5 – Buckling load vs. dynamic load. 

By drawing on the same benchmark two curves – the curve of the 
buckling load vs. time, Pcr(t), and the line of the dynamic load increase applied 
over time, F(t) – it is possible to obtain the dynamic buckling by the intersection 
of these two curves, as shown in Fig. 6. 

 

                             

 

 

Fig. 6 –  Critical load determined by the geometric process. 

 

e) Pseudo-Dynamic Method 

Consider an unperturbed motion, x, and a neighbourhood disrupted 
movement, xv , and also   x* = x – xv. The dynamic eq. of free motion is  

* * * 0.TMx Cx K x+ + =&& &                                         (1)                          

Eq. (1) can be written in matrix form as 
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or 
 

{ } [ ]{ }* *d .d X A Xt =                                            (3) 

  
The form of eq. (3) represents the first approximation of Lyapunov 

(Aggarwal, 1972; Nguyen, 2000) for the phenomenon of stability. The solutions 
of  eq. (3) may be given following an exponential form as 

* * ,
0( ) e .tX t X ω=                                                 (4)  

The system stops vibrating and becomes undefined when ( ) 0e ωℜ = , 
where ω = 0. This transition is characterized by the singularity of a tangent 
stiffness matrix, KT , that is 

0  implies  det[ ] 0.TKω = =                                      (5)  

The load factor, λ, is the ratio of the critical load to the applied load, 
given by λ = Pcr / P. In the neighbourhood λ ≅ 1, P leads to λP, and    

 becomes  .e g e gK K K Kλ+ +                                    (6)  

The characteristic eq. become 
 

{ }2 0.e gK K M xλ ω⎡ ⎤+ − =⎣ ⎦                                     (7)  

 
In the critical case, Pcr=λP, where the load factor assumes a 

critical value, λcr , and ω = 0. The above equation takes now the form  
 

{ } 0,e gK K xλ⎡ ⎤+ =⎣ ⎦                                      (8) 

 
which represents an eigenvalue-eigenvectors problem (λ , x). 

The flowchart in Fig. 7 shows a possible fluxogram to be followed for 
solving problems of dynamic buckling by the pseudo-dynamic method. 
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Fig. 7 – Schematic application of the pseudo-dynamic method. 

 
 

3. Applications 
 

3.1. Historical Overview (Sahu & Datta, 2007) 
 
One of the first contributions to the dynamic buckling analysis using 

numerical methods is due to Ari-Gur et al. (1982). It is an investigation on the 
behaviour of columns subjected to impacts. The computational part of the work 
uses the finite difference method. 

The application of the finite element method in the analysis of dynamic 
buckling of shells began in the 1970’s. Ari-Gur and Elishakoff (1997) and Yaffe 
and Abramovich (2003) have undertaken the study of a series of experimental 
works, starting from simple structures such as columns before addressing more 
complex structures such as stiffened shells. 
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Nakagawa et al. (1995) studied experimentally the behavior of thin 
cylindrical shells under seismic biaxial loading. 

Ren et al. (1983) conducted an experiment on the influence of impact 
velocities on the dynamic buckling of cylindrical shell, by testing an aluminum 
cylinder, built-in at one end and impacted by a mass of 54 g at the free end. The 
cylinder deforms axially when impacted by the mass falling from different 
heights. The free end that receives the shock is reinforced by a block of variable 
mass depending on the height of impact. It was verified that the buckling mode 
changed when the impact velocity increased. Before reaching a critical speed, 
the cylindrical hull deformed with a sinusoidal axial symmetry and the total 
strain remained generally small; consequently the shell retained its sinusoidal 
shape. But when exceeding the critical speed, the cylinder bends quite sharply 
and the non-uniform buckling shape loses its axial symmetry with the onset of 
large deformations. Since the meaningless sinusoidal shape of the tested 
cylinders only occurs for small strains and small deformations, the authors 
concluded that the loss of the cylinder’s bearing capacity defines such state as 
being the critical state of stability. 

Michel et al. (2000) designed an experiment to study the dynamic 
buckling under shear loading. This work has been validated numerically, 
particularly for the thin and thick vessels constructed in nuclear engineering. 

The first numerical studies of dynamic buckling dealt with simple 
structures such as rods and beams. Clough & Wilson (1971) addressed the case 
of thin shells in a broader context of nonlinear dynamics.  

More recently Karagiozova & Jones (2000, 2001, 2002, 2004) have 
examined the dynamic elastic buckling of elastoplastic cylindrical shells using a 
discrete method called “Backward Differentiation Formula (BDF)”. The results 
were also compared with those theoretically and experimentally obtained by 
Lindberg & Florence (1987). Their work also revealed a strong dependence of 
the characteristics of buckling on the dynamic load speeds. 

Simitses (1983) showed the effect of a static preload on the critical 
force. The effect of certain phenomena on the dynamic buckling were also  
investigated, but since the results were still disparate Petry & Fahlbush (2000) 
and others researchers have studied the effect of imperfections for in-plane 
impacts. 

3.2. A Cylindrical Roof under a Concentrated Load  

Consider the example of a cylindrical roof subjected to a concentrated 
load in his center as shown in Fig. 8. The variables of this example – radius of 
the cylinder, thickness of the roof, elasticity modulus, Poisson ratio and mass 
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density – were specified as R = 10L = 2,540 mm, t = 6.35 mm, E = 3.1029 GPa, 
ν = 0.3 and ρ = 7,800 kg/m3, respectively. 

 

 
Fig. 8 – Example of a cylindrical roof under concentrated load. 

This example has been studied by many known international 
researchers and engineers using a static analysis (Touati & Barros, 2008), where 
no application has been addressed for finding the critical load of dynamic 
bifurcation. But recent studies on the dynamic buckling of shells have been 
conducted by Djermane (2007) and published by Djermane & Chelghoum 
(2008) using a specific numerical approach. 

The variation of transversal displacement of the center of the roof 
versus time is shown in Fig. 9, under the application of concentrated forces very 
close to the dynamic buckling load. It can be noticed that the displacement 
under the load increases slightly until a load value of P = 0.485 kN beyond 
which corresponds a more significant oscillation around the position of static 
equilibrium.  

For the phase-plane representation from Fig. 10, the onset of bifurcation 
towards  a  dynamic  equilibrium  position  is  recorded  for  the  value  of  P = 
= 0.486 kN to which corresponds a quite significant increase of the post-critical 
movement, as visually seen by the magnitudes of the displacements and 
velocities for neighbouring loads immediately adjacent to the dynamic buckling 
load (Figs. 10 a and 10 b). The critical value of the dynamic bifurcation load is 
then taken to be Pcr = 0.486 kN. 

It is clearly seen that for P = 0.485 kN the trajectory of the motion is 
stable around the static equilibrium position (Fig. 10 a), but when the load, P, 
exceeds the value of 0.486 kN the trajectory (still stable in this example) makes 
more significant oscillations around the previous equilibrium position before 
launching into another stable post-critical equilibrium position (a focal central 
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point, of saddle type) nevertheless of much higher amplitudes and velocities as 
shown in Fig. 10 b. 

 

 
Fig. 9 – Dynamic response of the center of the cylindrical roof. 

 

                                                        
a                                                                       b 

Fig. 10 – Phase-plane: a – stable pre-buckling motion; b – stable post-buckling motion. 
 

3.3. A Cylindrical Tank under Horizontal Load 

The cylindrical tank structure investigated in this example has a 
clamped condition at the base and a free open top (Fig. 11). The dynamic load 
model established for the dynamic buckling analysis is the suddenly applied 
horizontal load on the top of tank, as a finite duration impulsive loading.  

For comparison with computational results associated with the 
parametric study of anchored metallic circular tank shells, designed under 
various seismic codes (Barros, 2007, 2008, 2010), the geometries of the tank 
used herein are shown in Fig. 11. Maintaining the meaning of the variables 
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already  used  in  the previous example of section 3.2: R = 6 m, H = 10 m, t = 
= 3.125 mm, E = 2.10 GPa, ν = 0.3 and ρ = 7.7 kN/m3. 

 
                                       P                       

 
                                                                           
                                                                            H = 10 m 

 
 
 

                                                                            
                                                                      R = 6 m 

Fig. 11 – Example of the cylindrical tank under  
a concentrated load at the top. 

 
Fig. 12 illustrates the results obtained for the dynamic buckling of the 

tank for aspect ratio H/R = 5/3 and for the stiffness ratio R/t = 1,920, as used 
earlier by Barros (2007, 2008, 2010) in the parametric study of the seismic 
response of circular metallic tanks. Until P = 994 kN, the radial horizontal 
displacement of the top of the tank, obtained by transient solution, oscillates 
around a fixed value. When  the force P  reaches and slightly exceeds the value  

  

 
Fig. 12 – Dynamic response ot the radial displacement  

at the top of tank.  

995 kN, then, beyond such threshold load value, the displacement undergoes a 
sudden increase in magnitude (a jump). This case corresponds to the occurrence 
of a critical value for the dynamic buckling load, as it is emphasized by the 
change  in  the  phase-plane  diagrams  from stable (Fig. 13 a) into unstable 
(Fig. 13 b) situations. 
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a                                                                  b 

Fig. 13 – Phase-plane: a – stable motion; b – unstable motion. 
 
 

4. Conclusions 
 

The criteria of the phase-plane–total potential energy approach, as well 
as of Budiansky & Roth, are mainly used by the authors in the investigation of 
critical conditions of dynamically loaded structures. 

Use of the total energy criteria and phase plane is very simple, however, 
it requires laborious work in solving equilibrium eqs. for different values of the 
loading parameter. Although this leads to a large computational time, the 
usefulness and efficiency of these criteria and methodologies in verifying results 
is quite considerable when compared with the direct way solution by other 
approaches. 

The Budiansky & Roth criteria is the most used in practice, either in 
determining the critical value of the excitation or in determining the magnitude 
and nature of displacement. It is also based on robust and sound mathematics, 
even in the neighbourhood of dynamic buckling. On the other hand, it requires 
hard work by calculating a transient response for different nonlinear loads, with 
very high computational time.  

Concerning the use of the criteria of total potential energy, one must be 
careful to the possible occurrence of parametric resonance. The corresponding 
studies indicate that a structure subjected to dynamic loadings can not produce 
other unstable conditions of displacement, but precisely should induce more 
displacements corresponding to the primary exciting function. 

Viscous damping affects dynamical characteristics of buckling. The 
effect of response decay on a dynamic system is an essential process of energy 
dissipation. It is obvious that the occurrence of viscous damping always 
increases dynamic buckling loads. 

For a better modelization of dynamic buckling phenomenon, it is 
important to have reliable criteria of dynamic stability and the pseudo-dynamic 
tests should meet these requirements. It is worth noting also that the use of 
conventional criteria of dynamic buckling is sensitive and risky for the cyclic 
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nature of seismic loading. Such use may even give misleading results in 
overestimating the critical level of seismic excitation. 

It is important to notice that if the static buckling of structures seems 
nowadays to be well understood, the dynamic buckling remains misunderstood 
and it continues to attract a lot of questions and confusions for a great number 
of researchers. Besides, the misunderstanding of the origin and of the possible 
aspects of such structural phenomenon gives rise to divergent opinions. On the 
other hand, dark areas of research still exist; namely: the interaction between the 
modes of vibration and the buckling modes, and the importance of decoupling 
the phenomenon of dynamic buckling and parametric resonance, for 
determining the critical load for dynamic buckling with improved efficiency of 
practical criteria available.  
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METODE NUMERICE PENTRU DETERMINAREA SARCINII DINAMICE 
CRITICE DE FLAMBAJ A PLĂCILOR SUBŢIRI 

Stadiul actual al cunoaşterii 
 

(Rezumat) 
 
Problema stabilităţii dinamice este considerabil mai complexă decât analiza 

flambajului plăcilor subţiri supuse la încărcări statice. Scopul acestei lucrări este de a 
prezenta nu numai criteriile de bază pentru determinarea sarcinii dinamice critice de 
flambaj a plăcilor subţiri, dar şi a criteriilor de verificare a rezultatelor. Un alt obiectiv 
este cel de a îndruma inginerii, oamenii de ştiinţă şi cercetătorii care se ocupă cu astfel 
de probleme, spre verificarea şi validarea rezultatelor lor experimentale sau numerice. 
Pentru a ilustra aplicarea acestor criterii, au fost studiate două exemple.  


