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Abstract. Unidirectional fibre reinforced polymer (FRP) composite 

elements are utilized nowadays in various applications in engineering structures. 
Many composite structures are made of unidirectionally reinforced laminas 
stacked in a certain pattern that matches the required stiffness and strength 
performance criteria. The constitutive equations for orthotropic laminas require 
the elastic constants associated with principal material axes. The elastic shear 
modulus of a composite lamina is a matrix dominated property that can be 
determined analytically using the inverse rule of mixtures. However the results 
obtained in such a way are much lower than the experimental values and some 
improvements are needed to develop more credibile evaluation models. The 
paper presents the most appropriate models and, in particular, the influence of 
contiguity factor, taking into account the effective fibre volume fractions in 
various fibre arrays. 
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1. Introduction 

 
Fibre reinforced polymer (FRP) composites consist of fibres of high 

hardness, strength and modulus embedded in a softer and weaker matrix, with 
distinct interfaces between them. Both constituents retain their physical and 
chemical identities, but their combination leads to properties that cannot be 
achieved with either of components working individually (Mallick, 2008).  

In the case of FRP composites the reinforcing fibres constitute the 
backbone of the material and they determine most of its strength and stiffness in 
the direction parallel to fibres. The polymeric matrix binds together the fibres 
and protects their surfaces from damage. It disperses the fibres, separates them 
and also transfers stresses to them.  

Most composite structures made of fibrous composites consist of 
several distinct unidirectional laminas.  

A unidirectional composite consists of parallel fibres embedded in a 
matrix and a lamina is a flat or curved arrangement of unidirectional or woven 
fibres in a support matrix.  

The unidirectional lamina (Fig. 1) is the basic building block in a 
laminated FRP composite. The direction parallel to the fibres is called the 
longitudinal direction (axis 1 or L) and the direction perpendicular to the fibres 
in the 1-2 plane is called the transverse direction. Any direction in the 2-3 plane 
is also a transverse direction. These axes are also referred to as the material 
axes of the lamina.  

 
 

 
Fig. 1 – A unidirectional fibre reinforced lamina  

with its principal material axes.  
 

The unidirectional composite shows different properties in the material 
axes directions. Thus, this type of composites is orthotropic with their axes 1, 2, 
3 as axes of symmetry.  
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2. Plane Stresses State and Specially Orthotropic Lamina 

 
A lamina with the reference axes coinciding with the axes of material 

(Fig. 2) is called specially orthotropic lamina; the plane state of stresses, typical 
to this element, is also illustrated in this figure. 

 

 
Fig. 2 – Specially orthotropic lamina under plane state of stress. 

 
In the analysis of composite structures it is often the case when a 

condition of plane stress actually exists or it is a very good approximation. 
Constitutive eqs. in principal material coordinates of a specially orthotropic 
lamina for the plane stress state (Tsai et al., 1980; Mallick, 2008) are 
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where Qij , (i, j = 1, 2, 3), are the terms of the reduced stiffness matrix. 
It may be pointed out that for two-dimensional orthotropy only four 

constants are needed namely, E1, E2, G12 and ν12; these constants can be 
measured in the laboratory and are termed engineering constants.  

The expressions for Qij, in terms of engineering constants, are 
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where E1 is the longitudinal elastic modulus, along the fibres (1), E2 – the 
transverse elastic modulus, perpendicular to the fibres direction (2), G12 – the 
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shear modulus of elasticity in the plane of lamina (1, 2), ν12 – the major 
Poisson’s ratio and ν21 – the minor Poisson’s ratio. 

The stiffness properties can be determined by experimental 
measurements, but one set of experimental measurements determines the 
properties of a fibre-matrix system produced by a single fabrication process. 
When any change in the system variables occur, additional measurements are 
required. These experiments may become time consuming and cost prohibitive; 
therefore, a variety of methods, based on micromechanics, have been used to 
predict them (Agarwal et al., 2006; Daniel et al., 2006). In prediction studies, 
micromechanics mean the analysis of the effective composite properties in 
terms of constituent material properties. The E-glass fibres have been utilized in 
the analysis presented in this paper. Many FRP composites for structural 
applications in civil engineering are based on thermosetting polymers. These 
polymers develop a spatial network that sets them in shape. If they are heated 
after they have been cured, they do not melt and will retain their shape until 
they begin to thermally decompose at high temperature (Askeland et al., 2010; 
Hollaway, 2010). An epoxy polymer matrix with elastic modulus E = 3 GPa and 
Poisson’s ratio ν = 0.38 has been utilized in this paper for numerical 
calculations. 

 
3. Geometry of Fibres Distribution and Contiguity 

 
The range of constituent volume fractions that may be expected in fibre 

reinforced composites can be determined using representative area elements for 
idealized fibre-packing geometries such as the triangular and square arrays 
shown in Fig. 3.  

 

 
       a             b 

Fig. 3 – Representative area elements for idealized fibre- packing geometries 
a – square array and fibres position for Vf  max; b – triangular array and fibres 

position for Vf  max. 
 

If it is assumed that the fibre spacing, s, and the fibre diameter, d, do not 
change along the fibre length, then, the area fractions must be equal to the 
volume fractions (Ţăranu et al., 2005) The fibre volume fraction for the square 
array is found by dividing the area of the fibre enclosed in the square by the 
total area of square. The maximum theoretical fibre volume fraction in the 
square area occurs when s = d, 
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 max 0.785.4fV π
= =  (3) 

 

In case of a triangular array when s = d, the maximum fibre volume 
fraction is 

 

 max 0.907.
2 3fV π

= =  (4) 

 

These theoretical limits are not generally achievable in practice. In most 
continuous fibre composites the fibre volume fractions range from 0.5 to 0.75.  

The reinforcing fibres on the cross section of unidirectional composite 
materials are usually randomly arranged (Fig. 4 b) instead of being distributed 
in a regular array. 
 

     
a   b   c 

Fig. 4 – Various schemes of fibre contiguity: a – isolated fibres (C = 0); b – actual 
random fibre (0 < C < 1); c – isolated matrix (C = 1). 

 
Considering C as the degree of contiguity, C = 0 corresponds to isolated 

fibres (Fig. 4 a) and C = 1 corresponds to all contiguous fibres (Fig. 4 c). 
 

4. The Influence of Contiguity on the Shear Elastic Modulus 

The behaviour of unidirectional composites under in-plane shear 
loading is dominated by the matrix properties and the local stress distributions. 
The mechanics of materials approach uses a series model under uniform shear 
stress (Fig. 5) to determine the shear modulus.  

 

 
Fig. 5 – The model used for the shear elastic  

modulus analytical evaluation. 
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The shear stresses are equal in fibres, matrix and composite and the 
compatibility of shear deformations is assured (Gibson, 2012). The in-plane 
shear modulus, G12, determined on the model is defined by relation 
 

 12
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where τ12 is average composite shear stress in the (1,2) plane and γ12 is the 
average engineering shear strain in the same plane. 

Using the model given in Fig. 5, a formula based on the inverse rule of 
mixtures has been deduced 
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Fig. 6 – Variation of G12 by inverse rule of mixtures compared to extreme contiguity.  

 
 

and the corresponding shear modulus values are illustrated in Fig. 6, the bottom 
curve, where G12 is the in-plane shear modulus of the composite, Gf – the shear 
modulus of fibres, Gm – the shear modulus of matrix; Vf and Vm – the fibres and 
matrix volume fractions, respectively. 
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The utilized model for G12 does not give precise results because it is 
based on many simplifications. In addition, the shear modulus values 
determined  experimentally are significantly higher than those determined with 
eq. (6). To obtain more accurate results complex analyses have been performed 
to give convenient predictions (Mathews et al., 2008). Some attempts have 
focussed on improving the inverse rule of mixture formula for shear loading, 
one of them based on contiguity. 

The approach that considers the contiguity has been analysed by Tsai 
(Jones, 1999) who has developed the following formulas for the shear modulus:  
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The contiguity factor, C, takes values between 0 and 1 (0 in case of 

totally separated fibres (Fig. 4 a) and 1 for total fibres contiguity (Fig. 4 c)). An 
averaging factor has been used by the authors to determine the intermediate 
stiffness values, considering the square array of reinforcing fibres (C0.785) and 
the triangular array (C0.907) respectively. These averaging factors take into 
account the effective fibre volume fractions 
 

 0 785 ,0 785
f

.

V
C .=

    
0 907 .0 907

f
.

V
C .=  (8) 

 
Figs. 7 a and 7b represent the influence of contiguity on shear modulus, 

considering the averaging factor effects (C0.785 and C0.907) versus extreme values 
of contiguity (C = 0 and C = 1). 

The specialized literature (Cooke, 1995) provides the upper (superior 
limit) and lower (inferior limit) bounds of shear modulus; the numerical results, 
calculated with these formulas, coincide with those obtained from formula (7) in 
which the extreme contiguity values have been introduced (Fig. 8) 
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a 

 
b 

Fig. 7 – Variation of shear modulus including the influence of fibres contiguity: 
a – averaging factor C0.785; b – averaging factor C0.907 
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Fig. 8 – Superior and inferior limits for shear modulus. 

 
 

4.1. Halpin –Tsai Formulas 
 
Halpin and Tsai developed semiempirical eqs. (Halpin, 1992) to match 

the results of more exact mechanical analyses. These eqs. include some 
parameters that are influenced by the geometry of the reinforcing fibres, their 
distribution in the composite and the loading condition, 
 

 12

1
,1

f
m

f

V
G G V

ξη
η

+
=

−  (10) 

 
where 
 

 
1

,f m

f m

G G
G Gη

ξ
−

=
+  (11) 

 
in which ξ is a factor depending on the fibre geometry, packing geometry and 
loading condition. A value of ξ = 1 has been suggested by Halpin and Tsai for 
fibres with circular cross section. 
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Experimental results indicate the adequacy of Halpin-Tsai eqs. to 
predict the shear modulus for practical requirements. Fig. 9 presents the 
influence of contiguity, on shear modulus, versus extreme values of contiguity 
(C = 0 and C = 1). As it can be noticed in Fig. 9 the Halpin-Tsai numerical 
results coincide with those based on the contiguity factor (eq. (7)) when C = 0. 

 

 
Fig. 9 – Shear modulus predicted through Halpin-Tsai equations  

versus influence of contiguity factor. 
 
 

4.2. The Composite Cylinder Assemblage (CCA) model 

This model enables the exact analytical evaluation of the effective 
elastic moduli (Jones, 1999). The model consists of an assemblage of composite 
cylinders (Fig. 10 a) each made of a circular fibre core and a concentric matrix 
shell (Zweben, 1995).  

In each cylinder the fibre volume fraction is kept constant (also 
meaning that the ratio r2/R2 is the same); each composite cylinder behaves as an 
equivalent homogeneous cylinder. The volume of the material is progressively 
filled out with composite cylinders with different radii. Consequently, the 
properties of the assemblage approach the properties of one composite cylinder, 
The following formula corresponds to CCA model: 
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a 

 

 
b 

Fig. 10 – CCA model and evaluation of G12 including the influence of contiguity:  
a – CCA model; b – influence of contiguity. 

 
Fig. 10 b presents the comparison of shear modulus values in terms of 

fibre volume fraction of the CCA model with respect to the extreme values of 
contiguity. 

 
4.3. The Self-Consistent Model 

The model gives one of the most exact solutions and it is described in 
engineering terms by Whitney and Riley in 1966 (Halpin, 1992, Chamis et al., 
1968). This model has a single fibre embedded in a concentric cylinder of 
matrix material (Fig. 11 a – Genta, 1982). The volume fraction of the fibre 
embedded in the composite cylinder is the same as that given by all fibres in the 
composite material. The formula to compute G12 in this model is identical to the 
one used in the CCA model, eq. (12). 
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a 

 

 
 

b 
Fig. 11 – Self-consistent model: a – the constituents assemblage; b – variation  

of shear modulus with fibre content. 
 

 
5. Results and Conclusions 

 
A synthesis of all results for the shear modulus is presented in Fig. 12. 

Since the shear modulus is a matrix dominated property, it can be seen from 
shear modulus curve traced with the inverse rule of mixtures (Fig. 6) that the 
fibres have a small contribution to the shear modulus of the unidirectional fibre 
reinforced polymer composites for low and medium fibre fractions. 

A large increase of the shear  modulus is obtained for very high fibre 
volume fractions impossible to be achieved with current fabrication procedures, 
therefore a different fibres architecture may be suggested when a significant 
shear modulus increase is required in a specific structural application.  

Experimental verification of the results provided by the inverse rule of 
mixture reveals a significant disagreement with theoretical shear moduli values. 
This mismatch can be explained by the approximations introduced by the series 
model (Fig. 5), that does not accurately simulate the behaviour of unidirectional 
composites under shear loading.  
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New models have been proposed and applied to match the experimental 
results with the theoretical ones utilizing more refined micromechanics 
analyses.  

The averaging contiguity factors, C0.785 and C0.907 , lead to intermediate 
shear modulus values corresponding to various fibre volume fractions 
distributed in square and triangular arrays. 

 

 
Fig. 12 – Synthesis of all results for the transverse modulus.  

  
 As it can be noticed in Fig. 12, the inferior limit of G12, the Halpin-Tsai 

eqs., the CCA model and the self consistent model give identical values of the 
composite shear modulus, corresponding to dispersed fibres (C = 0).  
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PROPRIETĂŢI MECANICE ALE MATRICELOR MINERALE CU COMPONENŢI 
ECOLOGICI: DETERMINAREA REZISTENŢELOR LA ÎNCOVOIERE ŞI LA 

COMPRESIUNE 
 

(Rezumat) 
 
Compozitele polimerice armate cu fibre (CPAF) unidirecţionale sunt astăzi 

utilizate în aplicaţii variate în ingineria structurală. Multe structuri compozite sunt 
formate prin stivuire de lamele armate unidirecţional într-o anumită aranjare care să 
satisfacă criteriile de performanţă privind rezistenţa şi rigiditatea. Ecuaţiile constitutive 
pentru lamelele ortotrope necesită cunoaşterea constantelor elastice asociate axelor 
principale ale materialului. Modulul de elasticitate la forfecare a unei lamele compozite 
este dominat de proprietăţile matricei şi poate fi determinat analitic utilizând regula 
inversă a amestecurilor. Totuşi rezultatele astfel obţinute au valori mult mai scăzute 
decât valorile experimentale şi sunt necesare îmbunătăţiri ale modelelor pentru o 
evaluare verosimilă. Lucrarea prezintă cele mai apropiate modele şi, în special, influenţa 
factorului de contiguitate, considerând variaţia fracţiunii volumetrice de fibră pentru 
diferite aranjări geometrice.  


