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Abstract. Soil–Structure Interaction is an important issue in the dynamics 

of structures, being not taken into consideration, in many cases, due to complex 
volume of computations. The interaction between soil and foundation becomes 
meaningful especially in the case of rigid structures and foundations, being 
object of intensive investigations in latest 30 years. The present study is aiming 
to evaluate the dynamic response of a foundation structure, interacting with the 
soil using the computational environment offered by EDT software (version 2.2, 
2010). 

Soil–structure interaction of rigid foundations is characterized by 
impedance functions. They are determined in this paper for a soil which may be 
arbitrarily layered and is underlained by a rigid or an elastic half space.  Vertical 
and rocking motions are considered. 

Two methods for the computation of the impedance functions are applied. 
The first approach is the so-called Thin Layer Method (TLM) following a theory 
developed by Waas-Riggs-Werkle (1985). It has been implemented by Horst 
Werkle (1985) in a MathCAD environment. In addition a solution in the wave 
number domain using the Elasto-Dynamic Toolbox developed by Schevenels 
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(Katholieke Universiteit Leuven, Belgium – 2008) is implemented in MATLAB. 
The results of dynamic analysis obtained with both theories are compared with 
the analytical solution for an elastic half space obtained by Gazetas (1983). 

  

Key words: Soil Structure Interaction; Impedance functions computation; 
ESD; Elasto-Dynamic Toolbox; MATLAB; MathCAD. 

 
 

1. Introduction 
 

In case of seismic or dynamic actions as explosions for example, the 
soil is modelled as a visco-elastic medium.  The nonlinear behaviour of the soil 
may be approximated by its equivalent linear stiffness and damping.  The time 
dependent displacements in the soil caused by a dynamic loading of the 
foundation can be considered as a superposition of three-dimensional waves, 
travelling through a continuum as P- or S-waves and surface waves as Rayleigh 
or Love waves.The P-waves are compression waves that appear in case of 
sudden growth of the compressive stress in the underground, in which the 
particles move in the direction of wave propagation. For S-waves, transversal or 
shear waves, the soil particles move perpendicular to the direction of wave 
propagation. The S-waves can be further divided into components in a 
horizontal plane, named as SH-waves, and in a vertical plane, called SV-waves, 
respectively. Other types of waves are surface waves which propagate along the 
soil surface. Their amplitudes decrease rapidly with depth. There are two types 
namely Rayleigh waves and Love waves (Fig. 1). A Rayleigh wave is a surface 
wave causing the ground to shake in an elliptical motion with no transverse 
displacements. A Love wave is a surface wave having a horizontal displacement 
that is transverse to the direction of wave propagation. 
 

                            

Rayleigh wave 
 
 
 

 

 
Love wave 
 

Fig. 1– Surface waves (http://earthquake.usgs.gov/learn/glossary). 
 

In this study one considers a structure having finite dimensions, lying 
over a deformable soil of infinite dimensions. If dynamic loads are applied the 
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structure with its foundation starts to move. The motion of the foundation 
placed on a half space causes time-dependent soil deformations which can be 
described by seismic waves. Due to the propagation of waves energy is 
dissipated from the structural system. This effect is denoted as geometric 
damping. 

The relationships between the time dependent forces and displacements 
of a rigid foundation on a homogeneous or layered half-space representing the 
elastic properties and the wave propagation in soil can be reduced to a single 
mass oscillator system for each degree of freedom (Fig. 1) for vertical motion. 
For a rigid foundation the impedance functions, i.e. the relationship between its 
forces and the displacements can be represented by springs and dampers. Fig. 1 
illustrates a spring-damper system in which the spring resumes the elastic 
behaviour of the soil, while the damper describes the geometrical energy 
radiation (reproduced after Studer et al., 2007). However the springs and 
dampers are frequency dependent, i.e. the analysis is done in frequency domain. 
An overview on soil–structure–interaction is also given by Wolf (1985, 1988). 

 

Fig. 2 – Model for a mass less rigid foundation on a half-space (Studer et al., 2007). 
  
2. State of the Art for Computation of Impedance Functions 
 
The impedance functions give the harmonic reaction forces or moments 

caused by a harmonic displacement or rotation, respectively, which has 
amplitude of one.  In frequency domain complex symbolic representation has 
been used to describe the amplitude and phase of the motion. A force can be 
described by 

 
    iΩe tP e P                                             (1) 
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and a displacement by 
 

 iΩe tu e u .                    (2) 
 
(see Fig. 1). Herein Ω denotes the circular frequency of the vibration, t – the 
time variable and F , ũ – the complex force and displacement, respectively. The 
complex spring, K , is now given as 
 

   ,F Ku                                                   (3) 
 

with     
  

1 2iK k k .      (4) 
 

The real part of the complex spring denotes the static part of the spring 
whereas the imaginary part is related to damping. In general real and imaginary 
part of a complex spring may depend on frequency, Ω.  Hysteretic material 
damping may be conveniently taken into account by a complex Young’s 
modulus or shear modulus as 

 

(1 2i )E E   ,                                            (5 a) 
 

(1 2i )G G   ,                                            (5 b) 
 
where: E and G are the Young’s modulus and shear modulus, respectively, and 
ξ – the hysteretic damping ratio. 

In order to describe the impedance functions of rigid circular 
foundations on a homogeneous soil the following notation is often used in 
literature: 
 

 stat 0(Ω) (Ω) i (Ω) (1 2 ).K K k a c i                         (6) 
 

Herein Kstat denotes the static stiffness and k(Ω), c(Ω) are dimensionless but 
frequency dependent impedance functions. The dimensionless frequency, a0 , is 
defined as 
 

    0
0

Ω
s

ra v ,    (7) 

 

where: r0 is the radius of the circular foundation, sv G /   – the shear wave 
velocity, ρ – the density and ξ – the material damping of the soil.  
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Impedance functions of rigid foundations have been derived for 
different geometries of soil and foundation by many authors (see Studer 
(2007)). Fig. 2 gives the dimensionless impedance functions according to eq. 
(6) of vertical and rocking motion of a rigid circular foundation on elastic-half 
space with ξ = 0 after Gazetas (1983). The corresponding static stiffness 
constants, Kstat ,  are for vertical motion 

 

 0
, stat

4
1z

GrK



                                               (8 a) 

 
and for rocking 
 

3
0

, stat
8

3(1 )
GrK 




.                                           (8 b) 

 
G again denotes the shear modulus and ν – the Poisson ratioof the soil. 
 

 
a 

 
b 

Fig. 3 – Dimensionless impedance functions of a rigid circular foundation on a 
half-space (Gazetas, 1983): a – vertical; b – rocking. 

 
For an elastic layer over a rigid base solutions have been derived by 

different authors, e.g. by Gazetas (1983). In case of a soil with a shear modulus 
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linearly increasing with depth, impedance functions of a circular foundation 
have been given by Werkle (1988).  Some solutions are also available for 
embedded foundations (see Studer, 2007). 

 
3. Greens Functions for a Layered Soil 

 
3.1. Thin Layer Method 

 
The computation of dynamic impedance functions is based on the 

Green’s functions of soil. A Green’s function is a fundamental solution which 
describes in the case of elasto-dynamics, the dynamic displacements in an 
elastic medium due to a unit point load.  

Classical solutions have been given for a point load on the surface of an 
elastic half-space in frequency domain. The Thin Layer Method (TLM),as 
developed by Lysmer and Waas (1972), was one of the first solutions for 
layered soils. In this semi-analytical technique the displacement functions are 
expressed by their analytical solution in the horizontal direction whereas in 
vertical direction piecewise linear shape functions as in the finite element 
method are used. It is well suited to model horizontally layered media where 
each layer may possess individual elastic parameters. Kausel and Peek (1982), 
as well as Waas et al. (1985) applied the method to obtain Green’s functions for 
point and distributed loads acting within (or on) a layered horizontally 
unbounded medium, with homogeneous or orthotropic material, respectively. 
These Green’s functions were later extended by Seale and Kausel (1989) for the 
modeling of layered media over elastic half spaces. Whereas the classical 
method is in frequency domain, Kausel (1992) also gave a solution in time 
domain. 

In the following the formulation according to Waas et al. (1985) is 
fstudied. Starting with the eqs. of motion of the three-dimensional visco-elastic 
continuum, first a solution of the homogeneous boundary value problem of the 
layered soil with a rigid base is investigated.  This leads to two eigenvalue 
problems, one for Rayleigh waves and another for Love waves (not shown 
here).  

According to Waas (1972) the eigenvalue problem for Rayleigh waves 
in a layered visco-elastic continuum can be written 

 
         2 0R R R R RA k B k C v   .                        (9) 

 
The matrices    , R RA B  and      2ΩR R RC G M   represent the 

system’s stiffness and mass and are assembled by the corresponding 4×4-
matrices of each layer,      , , el el elA B G  and  elM  (for details see Waas, 
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1972, 1985). Hence, for a system with nlay thin layers, the system matrixes have 
a size of (2nlay) × (2nlay). The eigenvalues, kR , are the complex wave numbers, 
{v} is the shape of the Rayleigh wave. Only those Rayleigh waves, which decay 
or propagate energy from the origin, are selected in order to satisfy the radiation 
condition at infinity. 

The solution of the inhomogeneous boundary value problem with 
prescribed loads at the surface or within the layered continuum is now obtained 
as superposition of the Rayleigh and Love waves multiplied by participation 
factors. In the horizontal direction the analytical solution in cylindrical 
coordinates is represented by Hankel functions. For a vertical distributed disk 
load, pz , with radius r0 on the soil surface (Fig. 4) the vector of vertical 
displacements at the layer interfaces at distance r from the center of the disk 
load is given by Waas et al. (1985) as 

  

   
   

   
lay

(2)
2 0 0 1 0 0

iΩ
1

(2)1
0 0 1 0 0

H J , for ,i e ,22 J H , for i

j j j

j j j

n R R R
t

z j j
j

R R R

k r k r k r r r
w p z Z

k r k r k r r r






 
    
  
 

  (10) 

 

 
Fig. 4 – Disk load on a layered continuum with a rigid base. 

 
where 

jRk  and {zj} are the wave number kR and the vector of the vertical 
displacement components of the eigenvector {v} in eq. (9), respectively, in the  
j-the mode. {ν} has to be normalized according to eq. (A 12). Z1j is the first 
element of  {zj} which relates to the vertical displacement at the soil surface. J0 , 
J1 are Bessel functions and (2) (2)

0 1H , H – Hankel functions of second kind. 
Solutions for horizontal displacements and other types of loading are given by 
Waas et al., (1985). 

The TLM has been implemented in several software codes, e.g. in 
SASSI 2000 (Lysmer et al., 2006).  An implementation in a MathCAD 
environment has been provided by Werkle (HTWG, Konstanz). 



144                                Mihai-Alexandru Cibotaru and Horst Werkle  

 
3.2. Wave Number Domain Solution (EDT) 

 
Now the case of a layered medium underlain by a visco-elastic half- 

space instead of a rigid base is considered. In this case of a system being 
unbounded in vertical direction, eigenfrequencies of the layered system and 
hence definite eigenvalues for the wave numbers as in eq. (9), do not exist. 
Instead a transformation from the space domain to the wave number domain is 
performed by means of a Hankel transformation. The algorithm can be 
improved through the use of a window and a filter to mitigate artifacts caused 
by the Gibbs phenomenon (Degrande & Geraedts, 2008). 

The method has been implemented in the Elasto Dynamic Toolbox 
(EDT) which is a MATLAB toolbox developed by Mattias Schevenels 
(Katholieke Universiteit Leuven, Belgium) (see Schevenels et al., 2010). The 
EDT toolbox allows computing the response due to a dynamic harmonic 
loading of the soil in frequency domain. This necessitates also the evaluation of 
inverse wave number integrals from the wave number to the spatial domain. An 
algorithm developed by Talman (1978), based on a logarithmic change of 
variables, has been implemented in EDT. The EDT toolbox can be used to solve 
problems of wave propagation as site amplification, surface waves or forced 
vibration problems. 

In order to determine the displacement at the soil surface due to a disk 
load  the function Disk_rec of the EDT can be used. EDT provides the function 
disk3d_rec to compute the disk load solutions in Cartesian coordinates. This 
function computes all three components of the displacement vector and all six 
components of the stress tensor at any coordinate of the half space.  
 

3.3. Numerical Results 
 

The displacements on the surface of a homogeneous half space due to a 
time-harmonic disk load, corresponding to a unit force in z-direction, have been 
computed both in MATLAB (using EDT) and in MathCAD (using the TLM). 
For the TLM model a large soil layer with 40 thin layers and a depth of 98 m  is 
used in order to simulate a half space.  

Following numerical data for very soft clay have been used: modulus of 
elasticity E = 5,000 kN/m2, Poisson ratio ν = 0.3, soil density ρ =2.0 t/m3 and a 
damping ratio ξ = 0.05 in both shear and volumetric deformation. This 
corresponds  to  a  shear  wave  velocity cs = 31 m/s; compression wave velocity 
cp = 58 m/s. The excitation frequency used was 0, 1.0 and 2.0 Hz. The radius of 
the disk load is r0 = 0.564 m. 

A comparison between the numerical results of displacements in z-
direction for different frequencies and at different distances from the origin, 
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obtained in the MATLAB and MathCAD environment, is given in Table 1.  The 
displacements at different distances from the origin for f = 0, 1.0, 2.0 Hz are 
presented in Fig. 5. The values obtained in both computational environments 
and with both numerical methods are in good agreement for all frequencies. 
 

Table 1  
Values of Displacements Obtained within MATLAB and Mathcad for Different 

Frequencies 
Distance 

r, [m] 
Frequency, [Hz]  

f  = 0 Hz f = 1 Hz f = 2 Hz 
MATLAB MathCAD MATLAB MathCAD MATLAB MathCAD 

0 1.78E–04 1.76E–04 1.74E–04 1.74E–04 1.71E–04 1.69E–04 
0.564 7.90E–05 8.09E–05 7.57E–05 7.85E–05 7.14E–05 7.21E–05 
1.128 3.65E–05 4.16E–05 3.28E–05 3.81E–05 2.65E–05 2.89E–05 
1,692 2.41E–05 3.02E–05 1.98E–05 2.55E–05 1.18E–05 1.41E–05 

 

 
Fig. 5 – Graphical representation of the displacements’ results, in MATLAB and 

MathCAD, for f = 0 Hz. 
 

4. Impedance Functions Computation 
 
The Green’s functions as obtained in the MathCAD environment, based 

on TLM and MATLAB environment using EDT (Talman, 1978) are now used 
to determine the impedance functions of a square foundation.  

In order to compute the flexibility matrix of the soil, the square 
foundation is divided into n square sub-areas (Fig. 6). The centers of the sub-
areas correspond to the nodal points of the flexibility matrix. At each of these 
points a disk load with radius r0 is applied. The area of all disk loads is equal to 
the area of the total square load, i.e. 
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2
pl pl 0a a n r .                                             (11) 

 

 
Fig. 6 – Subdivision of the foundation area and  

application of disk loads, (n = 4 × 4 = 16). 
 
The radius of the disk load hence is obtained as 
 

pl
0

a
r

n
 .                                               (12) 

 

In  the  study a mesh with n = 18 × 18 = 324 nodal points is used (see 
Fig. 7).  

At each nodal point a load is applied. The resulting complex vertical 
displacements are computed in frequency domain at each nodal point, applying 
the Green’s functions according to eq. (10) or using the ESD toolbox. This 
gives the complex flexibility matrix of the soil related to the nodal points of the 
foundations as 

 

                             
11 1

1

(Ω)
, ,n

n, n,n

N N
N

N N

 
      
 
 

 
   

 
.                                 (13) 

 
Here i , jN  is the vertical complex displacement at node I when a unit 

(disk) loads with circular frequency Ω is applied at node j. The matrix (Ω)N  
  

is symmetric. 
The inverse of the flexibility matrix gives the stiffness matrix of the soil 

namely 
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1

(Ω) (Ω)K N


      
  .                                   (14) 

  
The vertical complex spring constant is computed by imposing a 

displacement equal to one in every node of the model. Multiplying the stiffness 
matrix with the unity vector, the corresponding nodal forces are obtained 
namely 

 

1 1 1 1

1

1

1

, ,n

nn, n,n

k k F

Fk k

    
         

         

  
    

 

.                                 (15) 

 
Adding all the nodal forces the total force caused by a unit displacement 

of a rigid foundation is obtained. This is the complex vertical spring constant or 
the real and imaginary part of the impedance function in frequency domain 
according to eq. (4) 

 

                                            
1

n

k z i
i

k F F


    .                                       (16) 

 
The complex rocking spring constant is determined by imposing a 

rotation equal to one about the y-axis as (for xi see Fig. 6) 
 

1 1 1 1 1

1

, ,n

n nn, n,n

k k x F

x Fk k

    
         

         

  
    

 

.   (17) 

 
The vertical nodal forces are multiplied with the corresponding 

distances, xi , from the axis of rotationin order to find the rocking moment for a 
rotation equal to one of the rigid foundation plate. Summing all the bending 
moments it results 

 

                      
1

n

y i i
i

k M F x


    .                                         (18) 

 

Eq. (16) describes the complex impedance function for rocking about the y-axis. 
The method for the computation of the impedance functions has been 

implemented by the first author in MATLAB using the Green’s functions 
provided by ESD and by the second author in MathCAD based on the Green’s 
functions (eq. (10), obtained by using TLM). 
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5. Numerical Experiments in Computation of Impedance Functions 

 
For verification of the accuracy of the results, a model of a 18 × 18 m 

rigid foundation is considered, placed on a half-space. For the soil the same 
parameters as given in § 3.3 are used. The soil model investigated with the 
TLM in MathCAD consists of 40 thin layers with a depth of 98 m having the 
same properties as the half-space within MATLAB environment. 

The results obtained for a square foundation with MATLAB and 
MathCAD are compared with those of the analytical solution for a circular 
foundation. They are presented with the notation from eq. (6). The radius of an 
equivalent circular foundation is chosen such that for vertical motion the area 
and for rocking motion the moment of inertia of the square foundation and the 
circular foundations are the same. Hence the following equivalent radii are 
obtained: 

 

vertical:  pl
eq 10 16 m,z ,

a
r .


   

rocking: pl
eq 4

10 27 m
3,

a
r . . 

   

 
Table 2 presents the result for the static vertical and rocking stiffness in 

the MATLAB environment using EDT toolbox, the MathCAD environment 
using TLM as well as the analytical solution for a half-space according to eqs. 
(8 a) and (8 b). The results agree very well. Small differences are due to the fact 
that the MATLAB model as well as the analytical solution refer to a half-space 
whereas the MathCAD model is a layer model with a rigid base in great depth. 
There are also differences in the numerical method and the geometry of the 
foundation. However, there is no big difference in the results. 

 
Table 2 

Comparison for Vertical and Rocking Stiffness Values within 
 MATLAB & MathCAD 

 
Stiffness 

Relations for 
static 

stiffness 

Analytical 
solution for a 

half-space 

Results with 
Mathcad 

Resultswith 
MATLAB 

 
Vertical 

4
1

Gr
v

 
 

1.16 × 105 
 

1.24 × 105 
 

1.28 × 105 

 
Rocking  

38
3 1

Gr
v

 
 

7.94 × 106  
 

8.06 × 106 
 

8.09 × 106  
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The dimensionless impedance functions for vertical and rocking motion 
according to eq. (6) are presented in Tables 3 and 4 and in Figs. 7 and 8. They 
are given for dimensionless frequencies, a0 ,  in the range [0, 1.65]. Results are 
shown for the MATLAB computation based on ESD and for an elastic half- 
space. Both show a good agreement. This is also true for the MathCAD model 
(not shown here).  

         
Fig.7 – Dimensionless impedance functions kz and cz  for vertical motion. 

  

  
Fig. 8 – Dimensionless impedance functions kη and cη  for rocking  motion.  

 

Table 3  
Dimensionless Impedance Functions kz and cz for Vertical Motion 

 
 

 

Dimensionless 
frequency 

Stiffness coefficient  
kz 

Damping coefficient  
cz 

a0 MATLAB Analytical 
solution 

MATLAB Analytical 
solution 

        0 0.98 1 – – 
        0.2      0.9 0.98 0.62 0.78 

0.41 0.88 0.96 0.63      0.8 
0.62 0.86 0.94 0.65 0.81 
0.82 0.83 0.91 0.66 0.83 
1.03      0.8 0.87 0.69 0.85 
1.24 0.76 0.83 0.71 0.87 
1.45 0.73 0.78 0.75 0.89 

      1.65 
 

0.71      0.7 0.82 0.92 
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Table 4 
Dimensionless Impedance Functions kη and cη  for Rocking  Motion  

 
From the figures shown above we can observe that for dimensionless 

frequencies situated in [0, 1.65] range, the impedance functions obtained with 
the numerical method presented here compare well with those given by Gazetas 
(1983). 

 
 

6. Conclusions 
 
In this paper the computation of impedance functions for the foundation 

response in structural dynamics considering the SSI effect has been addressed. 
Two numerical methods for Green’s functions, the Thin Layer Method as 
developed by Waas et al. (1985) and a method based on the transformation in 
the wave number domain as implemented in the ESD toolbox, have been 
investigated and implemented in a MathCAD and a MATLAB environment, 
respectively. In this paper it has been identified that both methods and 
corresponding tools (TLM/MathCAD and ESD/MATLAB) can be used with an 
appropriate programming (ESD supplies only Green’s functions) to compute 
impedance functions necessary for SSI effects evaluation.  It has been shown, 
based on a benchmark example, that the results of both methods compared well 
with the analytical solution for an elastic half space. The potential of the 
methods presented here, however, goes beyond the simple case of a 
homogeneous half space since also arbitrarily layered media can be 
investigated.  This allows the analysis of realistic soil models in SSI.  

 

Acknowledgement. This paper represents mainly the results of the ERASMUS 
mobility at HTWG Konstanz University, baing supervised by Professor Horst Werkle. 
A special thanks to Professor Gabriela M Atanasiu for her help, support and guide lines 
to complete this paper and Master Thesis. 

Dimensionless 
frequency 

a0 

Stiffness coefficient 
kη 

Damping coefficient 
cη 

MATLAB Analytical 
solution 

MATLAB Analytical 
solution 

        0       0.98 1.00       0     0 
        0.2       0.87 0.97       0.01     0.023 
        0.41       0.78 0.93       0.025     0.05 
        0.62       0.72 0.91       0.06     0.076 
        0.82       0.7 0.87       0.065     0.092 
        1.03       0.697 0.80       0.07     0.11 
        1.24       0.694 0.78       0.12     0.13 
        1.45       0.692 0.72       0.15     0.16 
        1.65       0.69 0.66       0.2     0.18 
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Appendix 

 

Eigenvalue Problem of the Rayleigh Waves 
 

The eigenvalues and the eigenvectors result from solving the homogeneous eq. 
of motion (eq. (9)) 

 

         2 0R R R R RA k B k C v   ,                    (A1) 
with 

            2ΩR R RC G M  .                                         (A2) 
 

The vector {v} contains the complex displacements vj , ( j = 1,…,2n). They are 
related to the n layer interfaces. The odd terms v1, v3, v5 describe the horizontal 
component and the even terms v2, v4, v6 – the vertical component of the displacements.  
The 2n × 2n matrices [AR], [DR], [GR] and [MR] consist of the contributions from the 
individual layers and can be assembled by addition of layer sub matrices (Fig A1). 

The layer sub-matrices of a transversely isotropic medium are (Waas et al., 
1985)  

               

0 0
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0 0
2 ,

3
0 0
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0 0
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                        (A3) 

 

 

0 0
0 01 ,

2 0 0
0 0

rz rz rz rz

rz rz rz rz
e, j rz rz
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rz rz rz rz
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     (A4) 

     

              

0 0
0 01 ,

0 0
0 0
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e, j rz zz
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G G
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D D

 
  
 
   

                    (A5) 
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2 0 1 0
0 2 0 1

, .
6 1 0 2 0

0 1 0 2

e, j
hM h 



 
 
 
 
 
 

                                  (A6)  

For an  isotropic  material  Drr = Dzz = λ + 2G, Drz = λ, where  λ = G(E – 2G)/ 
/(3G – E) = 2Gv/(1 – 2v) is the Lamé constant. The sublayer matrices are constructed 
with the material parameters G, v and thickness h of each layer, i. Using complex 
elasticity parameters (eq. (5)) the hysteretic material damping of the soil can be 
included. 

The matrices [AR], [BR] and [CR] are symmetric. They are real in the undammed 
case and complex in the damped case.  

 
 

 
Fig. A1 – Structure of matrices [AR], [BR], [GR] and [MR]. 

 
For any given frequency, Ω, the homogeneous eq. of motion defines the 

possible wave numbers for generalized Rayleigh waves in the layered region  
                           

                                2 0R R R RA k B k C   .                                    (A7) 
  

The algebraic eigenvalue problem given by eqs. (A1) or (A7) has 4n generally 
complex  roots  ks,  (s = 1,2,….,4n).   The  corresponding   solution   vectors  {vs},  (s = 
= 1,2,….,4n) are called eigenvectors or mode shapes. It can be rewritten in the form of a 
linear eigenvalue problem of double dimension, 2m (with m = 2n) namely 

                                           
       0RE k F w  ,                                       (A8) 
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and 
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.                                              (A11) 

 
Waas (1972) presents a numerical method for finding out the eigenvalues and 

eigenvectors for the eq. (A8). 
The quadratic eigenvalue problem (eq. (1)), has 4n solutions. If kR is one 

eigenvalue, – kR is also an eigenvalue. Only those eigenvalues and the corresponding 
eigenvectors which are with negative imaginary parts are used in order to fulfill the 
radiation condition, i.e. the condition that the waves are propagating from the origin to 
infinity. In case of real eigenvalues those kR values with positive sign are used. 

The eigenvectors fulfill the orthogonality relationship  
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                       (A12) 

 
where kr and ks are two eigenvalues, kR and {v}r and {v}s are the corresponding 
eigenvectors. The case kr is used for the normalization of the eigenvectors, {v}. 
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EVALUAREA RĂSPUNSULUI  DINAMIC PENTRU FUNDAŢII RIGIDE 
CONSIDERÂND EFECTUL INTERACŢIUNE SOL–STRUCTURĂ 

 
(Rezumat) 

 
Interacţiunea dintre sol şi structură este foarte importantă în proiectarea unei 

structuri, dar de foarte multe ori este neglijată. Această interacţiune devine foarte 
importantă mai ales în cazul fundaţiilor amplasate pe un sol cu o capacitate portantă 
scăzută. Fenomenul de interacţiune sol–structură influenţează puternic reacţia structurii 
la acţiunea seismică, datorat în mare parte acţiunii diferitelor tipuri de unde din sol 

 Se calculează răspunsul dinamic al unei fundaţii , luând în considerare efectul 
interacţiunii sol–structură. Două metode au fost folosite pentru calculul funcţiei Green: 
metoda Thin Layer (TLM), teorie dezvoltată de Waas et al. (1985), şi o metodă bazată 
pe transformarea proprietăţilor undelor, metoda implementată în toolbox-ul EDT (Elasto 
Dynamic Toolbox), atât in MATLAB cât şi în MathCAD. S-a demonstrat că ambele 
metode (TLM/MathCAD cât şi EDT/MATLAB) pot fi folosite pentru a evalua 
răspunsul dinamic al unei fundaţii considerând efectul interacţiunii sol–structură, 
comparându-se rezultatele din ambele metode cu soluţia analitică. 

Potenţialul metodelor prezentate merge mai departe decât cazul simplu al unui 
spaţiu infinit omogen, deoarece pot fi calculate şi diferite spaţii stratificate. Acest fapt 
permite un calcul mai realistic pentru sol considerând efectul interacţiune sol–structură.  


