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Abstract. One of the approaches to reduce excessive oscillation on 

buildings due to dynamic forces is represented by installing a passive mechanical 
device called tuned mass damper (TMD). This paper presents a study on the 
effectiveness of TMD in reducing the response of structures that are subjected to 
seismic excitation. The earthquake accelerograms of El Centro’40 and Kobe’95 
are considered, and a two-dimensional linear-elastic model with TMD on the top 
is used in performing dynamic analysis. 

  

Key words: passive tuned mass damper (TMD); passive control; vibration control; 
earthquake. 

 
 

1. Introduction 
 
When a structure is subjected to an earthquake, or to the action of strong 

winds, a certain amount of energy is introduced into the structure. For moderate 
to strong earthquake or wind excitations, a substantial amount of the total 
energy introduced in the structure is dissipated as hysteretic energy. Physically, 
it represents energy dissipated through nonlinear behaviour of the structural 
members after yielding, and the more hysteretic energy dissipated, the higher 
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the structural damage. The displacements and the accelerations can become 
very large especially if the dynamic load frequency matches the structure’s 
natural frequency, resulting in resonance. 

Passive energy dissipative devices (PED) try to concentrate the 
dissipation of hysteretic energy in a few chosen and well-designed elements, 
and the remaining portion can be absorbed by the structure in elastic or near 
elastic behaviour. The tuned mass damper (TMD) is such an energy absorber 
consisting of a mass, a spring, and a viscous damper. Although active vibration 
control nowadays has received significant attention from many researchers, a 
passive control technique is still considered. One of the reasons for the 
acceptance of such devices is that they are very reliable since external power 
sources are not required for their operation. The motion of its mass is activated 
when the natural frequency of the TMD is tuned to be in or near resonance with 
the predominant frequency of the main structure. This tuning results in excellent 
reductions in displacement for loads applied at the resonant frequency but is less 
effective for loads at varying frequencies such as seismic loads. 

This paper presents a study regarding the effectiveness of TMD in 
reducing the response of structures that are subjected to seismic excitation. 
Frequency domain responses and time domain responses are computed using a 
Matlab program that relies on the state space formalism which is widely used in 
control system theory. The effectiveness of the TMD is evaluated by comparing 
the response: displacement and acceleration, with and without TMD. 

 
2. Analytical Formulation of a Tuned Mass Damper 

 
The concept of the Tuned Mass Damper dates back to the 1940’s 

(Hartog, 1947). It consists of a secondary mass with properly tuned spring and 
damping elements (s. Fig. 1), providing a frequency-dependent device that 
decreases response in the primary structure. In this study we will consider the 
motion of the structure in only one dimension. We will, for example, not 
consider the motion of the building in the vertical direction, and furthermore 
will assume the torsional effects on the building to be negligible. 

According to d’Alembert principle, the differential eqs. of motion for 
each mass from Fig. 1 take the form: 
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It’s convenient to represent the vibrating structural system response by 
a state space model in order to apply passive, semi-active or active techniques. 
In our case, the eqs. (1) of motion in which it’s substituted 1z x , 
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2z x  , 3 dz x , 4 dz x  , can be written in the following state space description 
as: 
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Fig. 1 – Mathematical model of TMD. 

 
Hence, the description can be modified to 
 

 
( ) ( ) ( )
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where: z(t) is the vector of the state variables, y(t) – the vector of the measurable 
variables, ( )gx t  – the ground acceleration, A – the system matrix, B – the input 
matrix, C – the output matrix,  D –the connection matrix between control input, 

( )gx t , and output, y(t). 
The first eq. of the system (3) is in fact a system of four ordinary 

differential eqs. with following solution: 
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where ( - )( , ) eA tt    and initial condition z(0) = z0. 
Besides a time domain approach, which is a good way for evaluating 

the response, a transfer function analysis can provide further insight into the 
response of structure as the parameters of TMD are varied. The transfer 
function H(s) is given by 

 

 
1( ) ( )H s C sI A B D   ,                                     (5) 

 

where: I is identity matrix. 
 
 

3. Response of the SDOF System Using Tuned Mass Damper (TMD) 
 

We will consider three SDOF models which have the critical damping 
ratio ξ = 2% and the following natural periods: T = 1.2 s, T = 0.8 s, T = 0.5 s. 
In the first case, the ratio, μ, between the mass of the TMD and the mass of the 
system it is chosen to be 1/100, and the damping ratio of TMD, ξd , is varied. 
The structure stiffness, k, structure damping, c, TMD stiffness, kd ,  and TMD 
damping, cd , can be calculated as following:  

 
2(2 )k f m ; 

2 (2 ) 4c f m fm    ; 
2(2 ) (2 )d d dk f m f m    ; 

2 (2 ) 4d d d d dc f m f m      , 
 

where: f is the structure nature frequency, and ρ – the ratio between frequency 
of the structure and the TMD, which is chosen typically 1 (Lee et al., 2006; 
Sadek et al., 1997). 

The transfer functions of the ground acceleration to the displacement of 
the system as the damping ratio of TMD is varied are presented in Fig. 2. If the 
damping is increased beyond 8% of critical the response of the three systems 
will increase, and also if the damping decreases less than 4% the frequency 
interval of the effectiveness of TMD will be reduced. In particular, for large 
damping ratio the effect of TMD is minimal, the behaviour of the model is just 
the same as for the model without TMD. 

In a second case, the same three SDOF are considered but this time the 
damping ratio of TMD ξd is maintained constant at 4% and the mass ratio, μ, is 
varied. Fig. 3 shows the frequency domain responses between the excitation and 
displacement of the system when the mass ratio μ is varied. 
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Fig. 2 – Frequency domain responses of structural model without and with TMD, 
μ=0.01 and the damping ratio of TMD, ξd , is varied. 
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Fig. 3 – Frequency domain responses of structural model without and with TMD, 
ξd=4% and mass ratio, μ, is varied. 
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The study of the system response only under harmonic excitation can’t 
provide enough information about its real behaviour. For this reason, it will be 
analysed the time history response of SDOF model with TMD under earthquake 
acceleration. Two earthquake signals, depicted in Fig. 4, are considered: 

a) El Centro earthquake signal: North-South component recorded at 
Imperial Valley Irrigation District substation in El Centro, California, during the 
Imperial Valley, California earthquake of May 18, 1940. The magnitude is 7.1 
and the maximum ground acceleration is 0.3495 m/s2. 

b) Hyogo-ken Nanbu (Kobe) earthquake signal: North-South compo-
nent recorded at Kobe Japanese Meteorological Agency (JMA) station during 
the Hyogo-ken Nanbu (Kobe) earthquake of Jan. 17, 1995. The magnitude is 
7.2 and the maximum ground acceleration is 0.8337 m/s2. 
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Fig. 4 – Earthquake signals. 

 
 
The response of the structure is highly dependent on the frequency 

content of earthquake accelerations. Fig. 5 shows the Fourier spectrum for the 
two signals, scaled at the same peak of maximum ground acceleration, 3 m/s2. 
The spectrum was elaborated using a Matlab function (FFT) that returns the 
discrete Fourier transform, computed with a fast Fourier transform (FFT) 
algorithm (Cooley & Tukey, 1965).  

Fig. 6 depicts the comparison of the time domain responses with 
uncontrolled structure and structure controlled with TMD, and Fig. 7 presents 
the maximum response of the structural models with periods from 0.1 s up to 
1.8 s, for different mass ratios. 
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Fig. 5 a – Fourier spectrum 
 of the El Centro’40 ground acceleration. 

Fig. 5 b – Fourier spectrum 
 of the Kobe’95 ground acceleration.  
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Fig. 6 a – Numerical simulations of the structural model  
under El Centro earthquake acceleration, (T = 0.35 s, μ = 1%). 
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Fig. 6 b – Numerical simulations of the structural model  
under Kobe earthquake acceleration, (T = 0.35 s, μ = 1%). 
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Fig. 7 a – The maximum structural response  

under El Centro earthquake acceleration for different mass ratio, μ. 
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Fig. 7 b – The maximum structural response  

under Kobe earthquake acceleration for different mass ratio, μ 
 

 
4. Conclusions 

 
Tuned mass damper (TMD) systems have been incorporated into many 

structures and dynamic systems throughout the world to effectively reduce 
undesirable oscillations. In this study, the effectiveness of the TMD using the 
proposed tuned parameters has been investigated through numerical example. A 
properly tuning leads to excellent reductions in displacement and acceleration 
for loads applied at the resonant frequency but is less effective for loads of 
different frequencies (see Fig. 6). The results of the study show that the 
responses  are generally decreased. However, in some cases as we can see in 
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Fig. 7 the responses could be equal or even larger, thus using of TMD for 
reducing seismic response should be reconsidered. 
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DISIPATOR CU MASA ACORDATĂ PENTRU PROTECŢIA SEISMICĂ 
 

(Rezumat) 
 
O metodă folosită pentru reducerea oscilaţiilor excesive a clădirilor solicitate la 

acţiuni dinamice, o reprezintă instalarea unui dispozitiv mecanic pasiv, numit  dispator 
cu masă acordată (TMD). Se prezintă eficacitatea unui TMD în reducerea răspunsului 
structurilor supuse la acţiunea seismică. Pentru analiza dinanică s-a considerat un model 
bidimensional liniar-elastic cu TMD la partea superioară, supus accelerogramelor 
cutremurelor  El Centro’40 şi Kobe’95. 



 


