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Abstract. In this paper a method of using neural networks for improving 

the computing method by increasing the accuracy in design of the reinforced 
concrete slabs from airport infrastructure is presented. The obtained results after 
the models developed with the method of finite element were used in order to 
create a neural networks simulating the function HR=f (He , css , K,adm), for dual 
type of landing gear, for each loading, reaction modulus considered, to design 
the reinforced layer for existing cement concrete slabs. The use of neural 
networks for the interpolations of functions to dimension the slabs proved an 
increase of result accuracy compared to the reading of nomograms, previously 
carried out, as well as the possibility of computing the variable concrete slab 
thickness, other than the one considered for the nomograms. 

  

Key words: neural networks; airport reinforced slabs; nomograms; runway 
structural design. 

 
1. Introduction 

 
The evolution of air traffic (intensity, types of aircraft) requires 

dimensioning of airport surfaces, with a high level of confidence. This airports 
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need to direct service to as many zones (cities) and requires increasing number 
of airbases, and for the existing ones, increase the track lengths and 
specifications. 

Necessity of reinforcing rigid structure airport roads determined by 
adaptation to new aircrafts types, with masses higher than those for which it has 
been sized and/or determined by decreasing bearing capacity, resulting from 
technical expertise, expressed through the technical condition. 

Reinforcement with cement concrete is designed to ensure the bearing 
capacity of rigid road structures necessary for prospective air traffic. 

This paper continues the studies from other two articles (Zarojanu et al.,  
2009; Covatariu et al., 2011) previous published. 

2. Neural Networks Computation 

Instead of all the progress in mathematics and computers evolution, 
some problems can’t be mathematically modelled or their implementation 
involve inadmissible computing period. In this way, problems can be classified 
in two types: 

a) “ill-posed” problems – where it doesn’t know an algorithm, yet, to 
find a result, or necessary working period of one of this algorithm is 
inadmissible; 

b) “well-posed” problems – can be associated with a formal model 
which can develop a solving method with algorithmic character, with acceptable 
times of execution. 

Intelligent computing is a domain of Artificial Intelligence which 
handled development of solving problems of "ill-posed" problems. Neural 
computing, like part of intelligent computing, can solve associated problems 
(classification, approximation, prediction, etc.). 

Neural networks are inspired from biology, certain, but there are big 
differences between artificial neural networks and the natural ones. Its allow 
solving of some complicate problems, with no sequential algorithm but posses 
some examples of solutions. Learning from this examples (training stage), 
network will be able to solve similar cases (work stage). 

Its can represent any computable function, but they can learn any of this 
function from examples. 

Structural analysis programs used in solving design are often expensive. 
Obtaining optimal solutions usually requires much iteration using analysis and 
optimization programs. These processes have become prohibitive, resulting in 
increased working time required for computer troubleshooting. A promising 
technique is to simulate a structural analysis program (expensive and slow) with 
an inexpensive and expeditive neural network. A neural network can reduce 
time and can lead to the optimisation of the design process or analysis. 
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Generally, in Civil Engineering domain, studies have combined 
laboratory tests with classical methods of analysis (numerical calculation, finite 
element programs, etc.) with the simulation of processes with neural networks. 

 
3. Reinforcing of Airport Rigid Runway Structures 

 
The airport road structures are designed usually as rigid slabs. 
Methods used to reinforcing’s dimensioning with cement concrete of 

existing road airport rigid structure present criterion for sizing, hypothesis and 
computing parameters similar methods of dimensioning the new rigid road 
airport structures. 

Nowadays, the direction of reinforcing’s redimensioning existing road 
airport rigid structures consist in solving with finite element method. 

The reinforced runway structure has, usually, several elements, like: 
subsoil; improved soil (stabilized, compacted); old layer; separating layer 
(maximum 5 cm) (optional); new layer (min. 15 cm). 

For reinforcing existing concrete runway structures it can be used two 
variants: 

a) reinforcing with mixture and asphaltic rock layer/layers; 
b) reinforcing with cement concrete slabs. 
The reinforcement with concrete of an existing airport rigid structures, 

is taking into account of the structural degradation (technique), in two manners: 
1º partially adherent slabs, when concrete reinforcement tile is moulded 

directly onto the existing concrete slab, whose state of disrepair allows working 
with tile to reinforce  (Fig. 1); 

Fig. 1 – Calculation scheme for reinforced rigid road structures: a – non-
adherent plates; b – partial adherent plates. 

 
2º non-adherent slabs, when between cement concrete slab to reinforce 

and existing concrete slab will be interposed a layer of separation, because the 
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state of degradation of the existing slab does not permit working with tile 
reinforcement (Fig. 1). The separation layer is made of mixture and asphaltic 
rock and has, generally, average thickness of 5 cm. 

In this study was taking into consideration the following values: 
1º Hypothesis of non-adherent plates (NA) – loads, P = 27.5; 35; 42.5 

tf, thickness of the reinforcing slab, HR = 15; 20; 25; 30; 35; 40; 45 cm, 
thickness of the existing slab, He = 25; 30; 35; 40 cm, coefficient of structural 
state, css = 0.35; 0.75. 

2º Hypothesis  of  partial  adherent plates (PA) – loads, P = 27.5; 35; 
42.5 tf, thickness of the reinforcing slab, HR = 15; 20; 25; 30; 35; 40; 45 cm, 
thickness of the existing slab, He = 25; 30; 35; 40 cm, coefficient of structural 
state, css = 0.75; 1.00. 

For reaction’s modulus at the surface of foundation soil are considered 
values K = 15, 30, 70, 100, 150 kN/m3. Loads, P, represent normal loads 
transmitted through the dual landing gear. 

The analysis of computing parameters was carried out by various 
simulations of cement concrete slab behaviour. The simulations were performed 
on models made with Finite Elements (FE), in variable composition of the 
airport structures (Zarojanu et al., 2000). 

 
 

4. Solving Problem of Dimensioning of Reinforced Layer for Existing Slabs 
 

3.1. Structure of Neural Network 
 

It was created a feedforward backpropagation network with 4 neurons 
on input layer and 1 neuron on output layer, and for hidden layer have tried 
many variations in the number of neurons to a small enough amount of the 
error. 

There has been created a pattern for each value of the load on the 
landing gear and every type of slabs (adherent or partial adherent) (Table 1). 

The obtained data by FE modelling was grouped by values sets and has 
been complied in order to create neural networks (280 sets for each 
combination: slab type and load value used for the reinforcement solution). 
From the data sets available, 60% were used for training, 20% for validation 
and 20% for the network’s testing. 

Inputs for neural networks were considered: existing slab thickness 
(He), coefficient of the structural state (css), reaction modulus (K), the limit 
bending tensile stress (adm) and the output is thickness of reinforced slab (HR). 
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Table 1 
Structures and Performances of Realized Neural Networks 

Type of 
landing 

gear 

Type 
of 

slabs 

NN topology / 
activation 
functions 

Algorithm 
training / 
learning 

No. of 
training  
epochs  

The mean 
square 

error MSE 

Normali-
sed MSE  

R 
correlation 
coefficient 

Dual  
P = 27.5 

NA 
5-20-1 

logsig - logsig - 
purelin 

LM / 
GDM 239 6.591237e

-004 
6.568818

e-006 1.00000 

PA 
5-25-1 

logsig - tansig - 
purelin 

LM / GD 201 4.093877e
-004 

3.835786
e-006 1.00000 

Dual  
P = 35 

NA 
5-25-1 

logsig - tansig - 
purelin 

LM / GD 179 4.599394e
-004 

4.509387
e-006 1.00000 

PA 
5-20-1 

tansig - logsig - 
purelin 

LM / GD 126 2.246167e
-004 

2.187248
e-006 1.00000 

Dual  
P = 42.5 

NA 
5-20-1 

logsig - tansig - 
purelin 

LM / GD 300 3.067685e
-004 

2.717876
e-006 1.00000 

PA 
5-20-1 

tansig - logsig - 
purelin 

LM / 
GDM 123 1.206526e

-003 
1.176675

e-005 0.99999 

LM – Levenberg-Marquardt algorithm; GD – gradient descent method; GDM – gradient descent 
method with moment. 
 

Figs. 2,...,4 shows the resulted graph values computed for reinforcing 
slab thickness in both hypothesis (adherent or partial adherent slabs) and 
various of input variables. 

The Figs. 5 and 6 illustrate different versions of the dimensional 
diagrams based on the values obtained with neural network. 

 

0 2 4 6 8 10
15

20

25

30

35

40

45

50

55

60
HR=f(t); P=27.5[tf]; He=15[cm]; css=0.5; K=80[MN/m3]

t [MPa]

H
R

 [c
m

]

  tadm=1.7MPa
      H=23.7544cm

  
0 2 4 6 8 10 12

15

20

25

30

35

40

45

50

55

60
HR=f(t); P=35[tf]; He=18[cm]; css=1; K=140[MN/m3]

t [MPa]

H
R

 [
cm

]

  tadm=2.5MPa
      H=23.615cm

 
a                                                        b 

Fig. 2 – Computing of thickness of reinforced slab for dual landing gear type:  
a – non-adherent hypothesis; b – partial adherent hypothesis. 
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Fig. 3 – Computing of thickness of reinforced slab for dual landing gear type: 
a – non-adherent hypothesis; b – partial adherent hypothesis. 
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Fig. 4 – Computing of thickness of reinforced slab for dual landing gear type: 
a – non-adherent hypothesis; b – partial adherent hypothesis. 
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Fig. 5 – Dimensional diagrams of reinforced slab for dual landing gear type: 
a – non-adherent hypothesis; b – partial adherent hypothesis. 
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Fig. 6 – Dimensional diagrams of reinforced slab for dual landing gear type: 
a – non-adherent hypothesis; b – partial adherent hypothesis. 

 
Checks have been carried out between the interpolated values from norms 

and the values calculated with neural networks (Table 2). 

 
Table 2 

 Comparison of Obtained Values from Reading the Nomograms vs. Neural Networks 

P 
tf 

K  
kN /  m3 

He 
cm 

Degra-
dation 
coeff. 

adm  
MPa 

H, [cm] Difference 
H 

(D-RN) 

Difference 
H 
% 

Reading 
diagrams 

NN 
Computing 

Rounded 
values 

Dual – non-adherent slabs 
 27.5   80 15 0.50 1.70 * 23.7544 23.8   
 27.5   30 30 0.35 1.61 15.0 15.0382 15.1 –0.1 –0.007 
 27.5   90 28 0.75 1.60 * 21.3512 21.4   
 27.5 150 40 0.35 0.49 35.0 35.1855 35.2 –0.2 –0.006 
 27.5   70 33 0.75 0.65 * 45.0796 45.1   
 27.5 100 21 0.75 1.20 * 32.7579 32.8   
 27.5 110 25 0.35 0.85 * 29.0478 29.1   
 35 140 18 0.75 2.50 * 19.8016 19.9   
 35 150 35 0.35 0.92 25.0 25.1425 25.2 –0.2 –0.008 
 35   50 21 0.35 2.55 * 13.9989 14.0   
 35   70 30 0.75 2.00 20.0 19.9895 20.0   0.0   0.000 
 42.5   90 36 0.35 1.35 * 20.5926 20.6   
 42.5 100 25 0.35 0.85 40.0 39.8047 39.9   0.1   0.003 
 42.5   35 42 0.75 1.70 * 20.8116 20.9   
 42.5   15 30 0.75 2.17 25 24.9810 25.0   0.0   0.000 
 42.5   50 28 0.35 1.85 * 20.1158 20.2   
 42.5   75 34 0.35 1.45 * 20.8225 20.9   
* values which cannot be read from diagrams 
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Table 2 
( Continuation) 

P 
tf 

K  
KN /  m3 

He 
cm 

Degra-
dation 
coeff. 

adm  
MPa 

H, [cm] Difference 
H 

(D-RN) 

Difference 
H 
% 

Reading 
diagrams 

NN 
Computing 

Rounded 
values 

Dual – dale partial adherent 
27.5   80 15 0.50 1.70 * 28.1104 28.2   
27.5   30 30 0.75 2.04 15.0 14.9868 15.0   0.0   0.000 
27.5   90 28 1.00 1.60 * 22.5575 22.6   
27.5 150 40 1.00 1.09 20.0 19.8841 19.9   0.1   0.005 
27.5   70 33 0.75 0.65 * 44.0724 44.1   
27.5 100 21 1.00 2.20 * 20.4655 20.5   

 35 120 35 0.75 1.45 * 20.1540 20.2   
 35 140 18 1.00 2.50 * 24.6329 24.7   
 35 150 35 0.75 0.80 40.0 40.0814 40.1 –0.1 –0.003 
 35   35 37 1.00 1.65 * 22.3615 22.4   
 35   50 21 0.75 2.55 * 22.9916 23.0   
 35   70 30 1.00 1.75 25.0 24.9280 25.0   0.0   0.000 
42.5   90 36 0.75 1.35 * 28.2285 28.3   
42.5 100 25 0.75 1.16 45.0 44.8105 44.9   0.1   0.003 
42.5   35 42 1.00 1.70 * 44.0999 44.1   
42.5   15 30 1.00 2.75 20.0 20.0364 20.1 –0.1   0.005 
42.5   50 28 0.75 1.85 * 28.4232 28.5   
42.5  75 34 0.75 1.45 * 28.6615 28.7   
* values which cannot be read from diagrams 

 
It has to be mentioned that the nomograms from norm NP038-99 are 

obtained for the unique value of cement concrete E = 30,000 MPa adjusted by css. 
In Figs. 5 and 6 load’s values, P, can be obtained from values interpola-

ted from diagrams. 

 
5. Conclusions 

 
Proposed methodology can improve results through: a) increasing of 

confidence level of results beside to reading the nomograms from norms, which 
have a limited number of values from computing parameters; b) possibility to 
introduce larger variation domains for computing parameters in order to 
elaborate an official method for dimension; c) reinforcement’s thickness for 
wide ranges of the values of parameters (the existing concrete class, t, the 
existing slab thickness, He, coefficient of structural state – technical state – css 
and the reaction modulus, K, value at la track bed level (the foundation soil or 
the upper level of the foundation). 
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UTILIZAREA REŢELELOR NEURONALE ÎN PROIECTAREA STRATULUI DE 
RANFORSARE PENTRU DALELE EXISTENTE ALE STRUCTURILOR RUTIERE 

RIGIDE AEROPORTUARE 
 

(Rezumat) 
 
Este prezentată o metodă de utilizare a reţelelor neuronale pentru îmbunătăţirea 

metodei de calcul prin mărirea acurateţei în proiectarea dalelor ranforsate din beton 
pentru infrastructurile aeroportuare. Rezultatele obţinute, după dezvoltarea prin metoda 
elementului finit, au fost folosite pentru crearea reţelelor neuronale ce simulează funcţia 
HR=f (He, css, K,adm), pentru aterizorul de tip dual, pentru fiecare încărcare, modul de 
reaţie considerate, pentru proiectarea stratului de ranforsare pentru dale din beton 
existente. Utilizarea reţelelor neuronale pentru interpolarea funcţiilor în dimensionarea 
dalelor au demonstrate o îmbunătăţire a acurateţii rezultatelor comparative cu citirea 
nomogramelor, realizate anterior, de asemenea, posibilitatea calculării grosimilor dalei 
de beton altele decât cele ce pot fi obţinute din nomograme. 



 


