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Abstract. The hydrological practice involve to obtain the primary 
informations abouth the hydrological parameters  which can be use in water 
infrastructure design. By a statistical processing of the  data  from  hydrological  
found  we can obtain  the parameters for designing and exploitation of hydraulic  
structures  and  not the last for  delivery the prognosys. 

The designing of  the  civil engineering structures demand the knowledge 
of the  basically designing parameters  (discharge, level, rainfall, volume, etc.) 
with exceeding calculus  and checkup probabilities. The aim of this paper is to 
show that some basic concepts and methods used in designing flood-related 
hydraulic structures assuming a normal distribution and, in particular, the 
concepts of return period and risk are formulated by extending the geometric   
distribution to allow for changing exceeding probabilities over time  with 
examples and applications. The applications demonstrate that the return period 
and risk estimates for nonstationary situations can be quite different than those 
corresponding to stationary conditions.  Annual extreme discharge occur from 
one year to another, without condition the mutual, but to reach the homogeneity 
necessary like string value is required to be made up of values generated by the 
same hydrometeorological conditions (rainfall or snowmelt or both). Special 
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attention should be given to the highest values due to difficulties in measurement 
and their calcululm.  

To establish the annual extreme flows can be used as Gumbel, Gauss-
Laplace or Gama probability distributions. The  normal and log-normal 
distributions  give a solution  regarding  the appropriate assessment of the risk of 
a hydraulic structure during the designing project. 

  

Key words: hydrological extreme parameters; statistical distribution; risk; 
design parameter. 

 
 

1. Introduction 
 
The hydrological practice involve to obtain the primary informations 

abouth the hydrological parameters  which can be use in engineering design.  
By a statistical processing of the  data  from  hydrological  found  we 

can obtain  the parameters for designing and exploitation of hydraulic  
structures  and  not the last for  delivery the prognosys. The designing of  the  
civil engineering structures demand the knowledge of the  basically designing 
parameters  (discharge, level, rainfall, volume etc.) with exceeding calculus  and 
checkup probabilities (Giurma et al., 2001; Giurma, 2004). 

Annual extreme discharge occurs from one year to another, without 
condition the mutual, but to reach the homogeneity necessary like string value is 
required to be made up of values generated by the same hydro-meteorological 
conditions (rainfall or snowmelt or both). Particular attention should be given to 
the highest values, however due to difficulties in measurement and their 
calculation. 

Current practice using probabilistic methods, applied for designing 
hydraulic structures generally assume that extreme events are stationary. 
However, many studies in the past decades have shown that hydrological 
records exhibit some type of such as extreme values and return period (Salas & 
Obeysekera, 2014; Crăciun et al., 2011). 

To establish the distribution of annual extreme discharge can use one of 
the following types of probabilities: Gumbel, Gauss-Laplace or Gama (Fürst, 
1996). The normal and the exponential distributions appear as limiting cases of 
high coefficient  of variation of the  statistical population. Testing of these 
theoretical results with numerous hydrological data sets on several scales 
validates the applicability of the maximum entropy principle, thus emphasizing 
the dominance of uncertainty in hydrological processes. Both theoretical and 
empirical results show that the state scaling is only an approximation for the 
high return periods, which is valid when processes have high variation on 
small time scales. In other cases the normal distributional behaviour, which 
does not have state scaling properties, is a more appropriate approximation (Lu 
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et al., 2013; Krishnamoorthy, 2006). Precipitation frequency distributions are 
generally skewed rather than normally distributed (Bao et al., 2011; You et al., 
2007). 

 
2. Gumbel Probability Distribution 

 
This method is used to determine values with different probabilities of 

extreme hydrologic elements as: maximum rainfall in 24 hours, the maximum 
annual flow, annual minimum flow levels, annual maximum, annual minimum 
levels. 

The elements of hydrological extreme parameters of the random 
variables, as is characterized by the property that their values, are 
chronologically successive independent of each other. The extreme values of 
random variables distributed according to a specific law (eq. type Gumbel) 
distribution law different from other values. To use the eq. of type Gumbel 
random variables must be selected from a large number of other independent 
variables (e.g. maximum flow each year is selected from the daily flow 365). 

For preparation of Gumbel probability curve is considered a statistical 
series data  Xi,  i = 1,...,n  in descending order (Xi > Xi+1). For the statistical 
series data is calculated arithmetic mean and standard deviation.  

In  eq. (1) for the statistical series in descending ordered the empirical 
probabilitie with formula of Weibull 

 

1i
ip

n
=

+
,                                                     (1) 

 
where i is the serial number of terms in the series; n – the total number of terms 
in the series.  

Empirical probabilities corresponding to each reduced variable Yi is 
calculated using eq.  
 

ln[ ln(1 )],i iY p= − − −                                         (2) 
 

Values with different probabilities  Qpi  is determined by the  eq. 
 

i

i
p d

YQ Q
α

= + ,                                               (3) 

                
where Qd is the mode, α – the standard deviation of the extreme values and Yi – 
the reduced variable. 
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In the Table 1 is presented a case  study for a statistical series data of 
discharge (column 2). The graphically value pairs (pi, ipQ ) give the Gumbel 
probability curve.   

 
Table 1 

Empirical Probability Values and Annual Maximum Flows with  
Different Probabilities Corresponding for Gumbel Method 

Year 
max
iQ in descending 
order, [m3/s] 1+

=
n

ipi
 Yi =–ln[–ln(1–pi)] ip d iQ Q Y / α= +

m3/s 
1987 30.21 0.050   3.113 29.54813 
1988 29.22 0.100   2.397 28.75152 
1989 28.87 0.150   1.968 28.27389 
1990 28.74 0.200   1.655 27.92615 
1991 28.66 0.250   1.406 27.64896 
1992 28.23 0.300   1.196 27.41581 
1993 28.09 0.350   1.014 27.21249 
1994 27.78 0.400   0.850 27.03042 
1995 27.67 0.450   0.700 26.86398 
1996 27.61 0.500   0.561 26.70921 
1997 26.56 0.550   0.430 26.56318 
1998 26.45 0.600   0.304 26.42355 
1999 26.34 0.650   0.183 26.28837 
2000 26.31 0.700   0.064 26.15588 
2001 26.23 0.750 –0.055 26.02433 
2002 26.21 0.800 –0.174 25.89189 
2003 26.13 0.850 –0.295 25.75635 
2004 26.07 0.900 –0.423 25.61483 
2005 25.89 0.950 –0.559 25.46302 

 
 

3. Gauss-Laplace Probability Distribution 
 

Relationship which gives us maximum annual flows with a certain 
probability after Gauss-Laplace  
 

medpi iQ Q Yσ= + ,                                                (4)     
                                    
where Qmed is the average value, σ – the standard deviation and Yi – the reduced 
variable. 

For the series of annual maximum values shown in Table 2 (column 2) 
will be the values of the columns 3 and 5, resulting in Gaussian-Laplace 
probability curve. 
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Table 2 
Empirical Probability Values and Annual Maximum Flows with  
Different Probabilities Corresponding Gauss-Laplace Method 

Year 
max
iQ in descending 
order, [m3/s] 1+

=
n

ipi

 

Yi=–ln[–ln(1–pi)] ip d iQ Q Y / α= +  
m3/s 

1987 30.21 0.050   3.113 31.16975 
1988 29.22 0.100   2.397 30.14781 
1989 28.87 0.150   1.968 29.53507 
1990 28.74 0.200   1.655 29.08896 
1991 28.66 0.250   1.406 28.73336 
1992 28.23 0.300   1.196 28.43426 
1993 28.09 0.350   1.014 28.17343 
1994 27.78 0.400   0.850 27.93985 
1995 27.67 0.450   0.700 27.72633 
1996 27.61 0.500   0.561 27.52778 
1997 26.56 0.550   0.430 27.34044 
1998 26.45 0.600   0.304 27.16131 
1999 26.34 0.650   0.183 26.98790 
2000 26.31 0.700   0.064 26.81793 
2001 26.23 0.750 –0.055 26.64917 
2002 26.21 0.800 –0.174 26.47927 
2003 26.13 0.850 –0.295 26.30539 
2004 26.07 0.900 –0.423 26.12383 
2005 25.89 0.950 –0.559 25.92908 

 
4. Gama Probability Distribution 

 
In this case to determine the annual maximum flows with different 

probabilities can use the relationship: 
 

 med
11 2 1
2ip v iQ Q C Y⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

,                                  (5)                

                          
where Qmed is the averagge, Cv – the coefficient of variation and Yi – the reduced 
variable. 

For the statistical series data the annual maximum flow given in Table 3 
can calculate the coefficient of variation and the module coefficient (Ki). Cv has 
the value 0.06366 for the the statistical series data from Table 3 (column 2). 

Fig. 1 shows a comparison of Gumbel, Gauss-Laplace and Gama 
probability curves distribution. 

From the Fig.1 we  can find the values of the hydrological parameter 
with different probabilities of  execeedance based on the three distribution 
curves (Table 4). 
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Table  3   
 Empirical Probability Values and Annual Maximum Flows with  

Different Probabilities Corresponding Gama Method 

Year 
max
iQ  in descending 

order, [m3/s] 1+
=

n
i

pi
 

med

i
i Q

Q
K

max

=
 

Yi ipQ  

m3/s 
1987 30.21 0.050 1.122   3.113 28.0662 
1988 29.22 0.100 1.085   2.397 27.2048 
1989 28.87 0.150 1.047   1.968 26.6882 
1990 28.74 0.200 1.047   1.655 26.3122 
1991 28.66 0.250 1.047   1.406 26.0124 
1992 28.23 0.300 1.047   1.196 25.7603 
1993 28.09 0.350 1.047   1.014 25.5404 
1994 27.78 0.400 1.010   0.850 25.3435 
1995 27.67 0.450 1.010   0.700 25.1635 
1996 27.61 0.500 1.010   0.561 24.9962 
1997 26.56 0.550 1.010   0.430 24.8382 
1998 26.45 0.600 0.972   0.304 24.6872 
1999 26.34 0.650 0.972   0.183 24.5410 
2000 26.31 0.700 0.972   0.064 24.3978 
2001 26.23 0.750 0.972 –0.055 24.2555 
2002 26.21 0.800 0.972 –0.174 24.1123 
2003 26.13 0.850 0.972 –0.295 23.9657 
2004 26.07 0.900 0.972 –0.423 23.8127 
2005 25.89 0.950 0.935 –0.559 23.6485 

 

 
Fig. 1 – The Gumbel, Gauss-Laplace and Gama probability curves. 

 
Table 4   

 Discharge Values with Probability of 0.05% of Exceedance with  
using  Gumbel, Gauss-Laplace and Gama Distributions  

Gumbel distribution Gauss-Laplace distribution Gama distribution 
0.05%
maxQ  =29.5 m3/s 0.05%

maxQ  =31.2 m3/s 0.05%
maxQ  =28.1 m3/s 
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5. Log-Normal Probability Distribution 
 

In the hydrological practice the frequency analysis purpose the 
estimating of the relationship between  a  hydrological  event and  the return 
period, T, of  this  event. 

The return period, T, can be  asimilate  with the  excendance probability 
of  the hydrological parameter, h, PH , where  H ≥ h,  is given  by the eq.  
 

1 ,  where 
H

T H h
P

= ≥ .                                      

(6)                        
 

In another  way, T is  related to the cumulative distribution function of  
h,  PH (H < h), by the relation 

 
1 , where 

1 H

T H h
P

= <
−

.                                   (7)        

                           
 

In the  hydrological practice  many cumulative distribution functions 
cannot be expressed  analytically  and  are tabulated  as  function of  normalized 
variables, H′, where 
 

med

h

H HH'
σ
−= ,                                             (8)                               

 
Hmed is  the  mean and σh – the  standard deviation of  the  hydrological 
parameter series.    

The cumulative probability distribution  of Hmed , PH′ (H′ < h′), for  
many distributions depends only by the h′ parameter and the skweness 
coefficient, Cs, of  the  statistical  population. 

The value of H′ with the return period  T  by h′T for  many probability 
distributions is  

 

( )'
T T sh K T ,C= ,                                            (9)                         

 
where KT(T,C) is  derived  from the   cumulative distribution function of H′ and  
can be  considered a frequency factor. 
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  From the eqs. (8) and (9) we can  find the probability of  the H with  
return period T, namely 

 

medT T Th H K σ= + .                                   (10)                               
The  frequency  factor, can  be  used  in many  engineering  applications  

bun  not  for  all  probability distributions (Moisello, 2007; Renard et al., 2006). 
 

6.1. The Normal Distribution 
 

In the case of  using  the  normal distribution  the  variable  H, is  equal 
to the standard normal deviation, and has a N(0,1) distribution (Douglas & 
Vogel, 2006; Limpert et al., 2001). The frequency factor can be approximated  
by the empirical eq. (Abramowitz & Stegun, 1965) 

 

2

2 3

2 5255 0 8028 0 01032
1 1 43278 0 189269 0 001308T

. . w . wK w
. w . w . w

+ += −
+ + +

,       

(11)              
 

where                   
0 5

2

1
.

w ln
p

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
       

 

with the parameter, p, has values situated between 0 and 0.5; the parameter p is 
the  exceedance  probability   
 

T
p 1= .                                                    (12)                            

 

The particulary situation when p is greather than 0.5, 1 – p is substuited 
for p in the eq. (12)  and the value of the  frequency factor can be computed  by 
the eq. (11) is  given a negative sign. The error when using  the eq. (11)  to 
estimate  the  frequency factor  is  less  than 0.045%, acceptable in the 
hydrologically practice to establish the  designing parameters (West, 2009; 
Aitchison & Brown, 1957). 

In the  case  of a log-normal distribution, the random variable is first 
transformed using the relation 
 

Y lnH=                                                (13)                                
 

and the value of Y with return period T;  yT is given by 
 

medT T yy Y K σ= + ,                                      (14)                            
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where Ymed and σy are  the mean  and  respectivelly  standard deviation of  the 
statistical parameter Y and KT – the  frequency factor of the standard normal 
deviation with return period T. 

The  value of the  original variable, H, with returd period T, hT, is given 
by relation 

 
1 e y T

T Th ln y−= = .                                   (15)  
An application of the log-normal distribution  for a statistical data 

series. On for the  mean  annual rainfall at a  rainfall station  is normally 
distribuited with a mean of  760 mm  and  a  standard  deviation  of  555 mm. A  
designing approach demands the  knowledge  of the  50-year annual rainfall.  

In the case study the log-normal distribution provide a design  
parameter of 14.81%, higher than in the normal distribution which provides  
extrasafety. 
 

6. Conclusions 
 

Annual extreme discharge occurs from one year to another, without 
condition the mutual, but to reach the homogeneity necessary like string value is 
required to be made up of values generated by the same hydrometeorological 
conditions (rainfall or snowmelt or both). Special attention should be given to 
the highest values due to difficulties in measurement and their calculus.  

To establish the annual extreme flows can be used as Gumbel, Gauss-
Laplace or Gama probability distributions. The normal and log-normal 
distributions  give a solution  regarding  the appropriate assessment of the risk 
of a hydraulic structure during the designing project. 

In hydrological practice is important to consider the best hypothesis to 
determine the design parameters. The literature offers many possibilities to 
establish design parameters with different probabilities of exceeding Strabilia 
by Design specifications and it is imperative to include these parameters in 
assumptions and risks related to the period of exploitation of the work.  

This paper presents the case considering two methods of establishing an 
important hydrological parameter in sizing civil engineering structures with 
different probabilities can be taken to overcome some methods amog others in 
terms of design specialists provide additional security.  

The two probability distributions: normal distribution, respectively, log-
normal distribution, analysed in this paper, provides professionals the 
opportunity to choose the safest option.  

The case study analysed log-normal distribution provides a sizing 
parameter 14.81% higher than in the normal distribution which provides extra 
safety. 
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DETERMINAREA DEBITELOR  EXTREME  (MAXIME, MINIME) ANUALE  CU  
FRECVENŢE ŞI DIFERITE  PROBABILITĂŢI DE  DEPĂŞIRE 



 Bul. Inst. Polit. Iaşi, t. LX (LXIV), f. 2, 2014 71 

 
(Rezumat) 

 
În practica hidrologică este important să se adopte cea mai potrivită ipoteză  

pentru a stabili parametrul de proiectare.  
Literatura de specialitate oferă multe posibilităşi de a stabili parametrii de 

proiectare cu diferite probabilităşi de depăşire stabiliţi prin prescripţiile de proiectare şi   
este absolut necesar să se includă în aceşti parametri ipotezele şi riscurile aferente  
perioadei de exploatare a lucrării. 

Lucrarea prezintă situaţia analizei unor metode de stabilire a unui parametru 
hidrologic important în dimensionarea structurilor de inginerie civilă cu diferite  
probabilităţi de depăşire putând fi asumate unele metode în dauna altora din prisma 
oferirii specialiştilor din proiectare a unei siguranţe suplimentare. 

Debitele  extreme anuale se produc de la un an la altul, fără a se condiţiona 
reciproc, dar pentru a se ajunge la  omogenitatea necesară se impune ca şirul de valori 
să  fie alcătuit  din valori generate de aceleaşi condiţii hidrometeorologice (ploi sau 
topirea  zăpezilor sau ambele situaţii). O atenţie deosebită trebuie acordată celor mai 
mari valori datorită  dificultăţilor întâmpinate în măsurarea şi calculul lor. 

Pentru stabilirea debitelor extreme anuale se pot utiliza  distribuţii de 
probabilitate  ca Gumbel, Gauss-Laplace sau Gama. Alte  tipuri de distribuţii,  respectiv 
distribuţia log-normală, oferă specialiştilor posibilitatea de a stabili frecvenţa de apariţie 
a unor valori extreme ceea ce oferă un surplus de siguranţă. 


