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Abstract. In this paper we review some data assimilation applications in 

hydrology and we investigate the benefits of applying the ensemble Kalman 
filter methods on a specific hydrodynamic model of a river network using the 
MIKE 11 software. We explore the efects of assimilating measurements from 
different locations (generated by a reference model) into a model forced with 
erroneous boundary conditions and also examine the effect of using coloured 
noise for describing uncertainty in the upstream boundary conditions. 
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1. Introduction 

 
Data assimilation techniques have become more popular over the last 

decade in modelling and forecasting large systems due to the ever increasing 
computational resources. By combining any available measurements of the state 
of the system with the model dynamics, data assimilation provides a more 
robust model and improves the knowledge of the system using the Kalman filter 
framework which adds to the deterministic model a stochastic part both in the 
model dynamics and in the measurements (Evensen, 2009). In this paper we 
review some data assimilation applications in hydrology and we investigate the 
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benefits of applying the ensemble Kalman filter methods on a specific 
hydrodynamic model of a river network using the MIKE 11 software. 

The ensemble Kalman filter implemented in the data assimilation 
module of MIKE 11 is based on a stochastic model formulation in which model 
uncertainties are quantified and propagated through the model, which also 
allows for general uncertainty assessment, i.e. without assimilation of 
measurements  (Drecourt  et al., 2006; Madsen & Skotner, 2005; Sorensen & 
Madsen, 2004). In our hydrodynamic model we use assimilation of two types of 
measurements (water levels and discharges) and we assume model errors in the 
infow discharge boundaries. We explore the effects of assimilating 
measurements from different locations (generated by a reference model) into a 
model forced with erroneous boundary conditions and also examine the effect 
of using coloured noise for describing uncertainty in the upstream boundary 
conditions. 

 
2. Data Assimilation Framework 

 
We consider a model that can be described in a deterministic discrete-

time dynamic system setting as 
 

 1 ,k k kx x u  ,                                           (1)     
 
where:  xk is the state variables of the system at time step k, uk – the forcing 
terms of the system (including all boundary conditions) and Φ(...) – the  model 
operator. 

We also consider the measurements vector 
 

k k kz C x ,                                               (2)                                                             
 

where Ck is a matrix that describes the relation between measurements and state 
variables (i.e. mapping of the state space to measurement space). 

The data assimilation process is a succession of two steps: 
1º The model is employed to issue a forecast 

 

 1
f a

k k kx x ,u  .                                            (3)                                                
 

2º The observed data are meld with the forecast to provide an updated 
state (analysis step), which is chosen to be a linear combination of the data and 
the model 
  

 a f f
k k k k k kx x G z C x   ,                                      (4)                                                 
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where: f
kx is the forecast state vector, a

kx – the analysed or updated state vector,  

kG – weighting matrix (gain matrix) and f
kkk xCz  – the innovation vector, 

which includes the differences between the measurements and their model 
forecasted equivalents. 

The Kalman filter is based on a stochastic formulation of the model eq. 
(1) and measurement (eq. (2)):  

 

 1k k k kx x ,u    ,                                         (5) 
                                            

k k k kz C x   ,                                              (6)                                                  
 

where: εk is the model error of the forcing terms  and ηk – the random 
measurement error vector with zero mean and covariance matrix Rk. 

The uncertainty of the model forecast is described by the covariance 
matrix f

kP . The Kalman gain to be used in the update eq. is given by 
 

  1f T f T
k k k k k k kG P C C P C R


  .                                (7) 

                                     

The model covariance expresses how the innovation vector should be 
distributed on the state vector, and the relation between the model and 
measurement covariances expresses how much weight should be put on the 
measurement. For non-linear and high-dimensional systems the evaluation of 
the covariance matrix, f

kP , requires huge computational costs and storage 
requirements, end hence makes the filtering infeasible for real-time 
applications. In the EnKF, the covariance matrix is represented by an ensemble 
of possible state vectors, which are propagated according to the dynamical 
system subjected to model errors, and the resulting ensemble then provides 
estimates of the forecast state vector and covariance matrix. 

The EnKF algorithm asumes that measurement errors are uncorrelated 
i.e. the covariance matrix, Rk , is a diagonal matrix, 2 2

1diag ,.. .,k pR      . For 

a given set of state vectors 1,... ,f
j ,kx M  we have the following steps: 

1. Each member of the ensemble is propagated forward in time accor-
ding to the stochastic dynamical system, the model error being drawn from a 
Gaussian distribution with zero mean and known covariance 

2. The forecast of the state vector is then estimated as the mean of this 
ensemble: 

 

1

1 Mf f
k j ,k

j
x x

M 

  .                                             (8)                            
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3. An estimate of the covariance matrix is found 

 

 1
1

Tf f f
k k kP S S

M



,   where      

ff f
kj ,k j ,kS x x  .                    (9)                  

 
4. Each of the ensemble state vectors are updated sequentially. Since the 

measurements are independent, the sequential update procedure processes one 
measurement at a time. 

5. The updated state vector and covariance matrix are estimated as 
 

 
1

1 1, 
1

M Ta a a a a
k j ,k k k k

j
x x P S S

M M

 
 .                          (10)                            

 
In the implementation of the EnKF the covariance matrix Pk is never 

calculated, all calculations are based on Sk. When no data are available for 
updating, only steps 1...3 are carried out. 

 
3. MIKE 11 Software 

 
MIKE 11 is a 1-D dynamic modelling system for rivers, channels and 

reservoirs, used for simulating flow and water level, water quality and sediment 
transport in rivers, floodplains, irrigation canals, reservoirs and other inland 
water bodies, so it is applicable for simulating rivers and other open surface 
water bodies which can be approximated as 1-dimensional flow. It has modules 
for several types of problems, from flood forecasting and dam breaches to water 
quality and integrated modelling (groundwater and surface runoff). 

In the hydrodynamic simulation module, the following assumptions are 
made:  

a) incompressible and homogeneous fluid; 
b) flow is one-dimensional (uniform velocity and  water  level  in  cross-

section); 
c) bottom slope is small; 
d) small longitudinal variation in geometry; 
e) hydrostatic pressure distribution; 
f) conservation of mass 

 

0Q hb
x t

 
 

 
                                           (11)  
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g) conservation of momentum 
 

 2 2

4 3 0
Q A gn Q QQ hgA

t x x AR
 

   
  

.                         (12)   

 
For more details see (Giurma et al., 2009a; Giurma et al., 2009a; DHI, 

2011). 
There are two data assimilation methods implemented in MIKE 11: 

Ensemble Kalman Filter and uncertainty prediction, and different types of 
measurements that can be assimilated: water levels and discharges (in 
hydrodynamic modelling), or concentration, temperature, salinity (in advection–
dispersion modelling). The data assimilation module assumes errors in model 
forcing (e.g. inflow discharge boundaries, rainfall-runoff boundaries), which are 
represented as coloured noise using a first order autoregressive process 

 
1k k k     ,                                      (13)  

 
where the autoregressive coefficient is defined in terms of time constant 
 

ln2exp t
TC


   

 
.                                     (14)    

 
By using an auto-regressive description the model error has some 

memory that is propagated as part of the model forecast. The model state is 
augmented with the model errors that are updated as part of the Kalman Filter 
update scheme. 

 
4. River Model Application 

 
We consider a river model forced by discharge inflow at the upstream 

boundaries. First we run a reference (true) model with specified boundary 
conditions, and then, by changing these conditions we obtain a background 
(false) model with erroneous boundary conditions, on which we will run the 
data assimilation procedure using as measurements the water levels from 
reference model at selected locations. We use three different setups: 

a) assimilation of water levels from 1 measurement point using white 
noise model error; 

b) assimilation of water levels from 1 measurement point using coloured 
noise model error; 

c) assimilation of water levels from 3 measurement point using coloured 
noise model error. 
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The river network consists of a main river named Mainstrezm and two 
tributaries named Trib1 and Trib2, with specified cross-sections, boundary data 
and hydrodynamic parameters (Fig.1). 

The simulation will provide results from all computational grid points 
(discharges and water levels), and we select 5 locations in which the results are 
analysed. 

 

 
Fig. 1 –River network. 

 
The above true model defines the reference model to be used in the data 

assimilation run, and the false model has an identical setup except for the 
upstream discharge boundary conditions. 

Water levels from selected points in the river system are extracted from 
the reference model and used for assimilation in the model forced with 
erroneous boundary conditions. Three water level locations have been defined; 
one location at the upstream part of the main stream, one at the downstream part 
of tributary Trib1, and one at the downstream part of tributary Trib2. 



 Bul. Inst. Polit. Iaşi, t. LX (LXIV), f. 2, 2014 99 

 
Fig. 2 – Assimilation of water levels from 1 measurement point  

using white noise model error. 
 

 
Fig. 3 – Assimilation of water levels from 1 measurement point 

 using coloured noise model error. 
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Fig. 4 – Assimilation of water levels from 3 measurement 

 point using coloured noise model error. 
 
In the Data Assimilation module we choose the measurement update 

mode and the ensemble Kalman filter method. Model uncertainties are defined 
in the three upstream boundary conditions using in our case a standard deviation 
of 10% for each discharge boundary. Colored noise can be defined using a first 
order autoregressive process with a specified time constant. 

For the three different setups considered we find the following results in 
the 5 points we chose: 

a) assimilation of water levels from 1 measurement point using white 
noise model error (Fig. 2); 

b) assimilation of water levels from 1 measurement point using colored 
noise model error (Fig. 3); 

c) assimilation of water levels from 3 measurement point using colored 
noise model error (Fig. 4). 

 
5. Conclusions 

 
Assimilating measurements using the Ensemble Kalman Filter method 

improves the simulation results in case of erroneous boundary conditions and 
using coloured noise for describing uncertainty in the upstream boundary 
conditions provides better results. 
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The amount of measurements assimilated also improves the quality of 
the results, and also the location of the assimilated measurements can have an 
impact on the simulation results, depending on the structure of the river 
network. 

Finally, data assimilation can be used as part of a forecasting system by 
assimilating the measurements up to the time of forecast, and then propagating 
the ensemble (without assimilation) in the forecast period. 
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APLICAŢII ALE ASIMILĂRII DATELOR ÎN HIDROLOGIE 
 

(Rezumat) 
 
Tehnicile de asimilare a datelor au devenit populare pe parcursul ultimei 

decade în modelarea şi prognozarea sistemelor de mari dimensiuni datorită dezvoltării 
capacităţilor computaţionale. Prin combinarea măsurătorilor disponibile ale stării 
sistemului cu dinamica modelului, asimilarea datelor furnizează modele mai robuste 
utilizând teoria filtrelor Kalman care adaugă modelului determinist componente 
stocastice atât la dinamica modelului cât şi la măsurători. 

Se trece în revistă câteva aplicaţii ale asimilării datelor în hidrologie şi se 
investighează beneficiile aplicării metodelor furnizate de EnKF (Ensemble Kalman 
Filter) pe modelul hidrodinamic al bazinului unui râu folosind programul MIKE 11. În 
modelul hidrodinamic studiat se folosesc două tipuri de măsurători (niveluri şi debite) şi 
se presupune că modelul are erori la debitele de intrare. Sunt explorate efectele 
asimilării măsurătorilor din diferite locaţii (furnizate de un model de referinţă) atunci 
când condiţiile la limită sunt eronate şi de asemenea este examinat efectul folosirii unui 
zgomot colorat pentru incertitudinile din condiţiile la limită. 



 


