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Abstract. The paper presents a review of the main theories utilized in the 

bending behavior analysis of inhomogeneous sandwich plates, as well as their 
limits of application. Seeing how in the current practice, sandwich panels are 
made from various materials and with great dimensional variety, it is necessary to 
investigate, both numerically and experimental, in order to adequately establish 
the bending response parameters of the above mentioned plates. The numerical 
analysis carried out refer to the maximum transverse deflection of a sandwich 
panel, with simply supported boundary conditions, and uniformly loaded. The 
total thickness of the panel remains constant, but the thickness of the extruded 
polystyrene core and that of the aluminum facings vary. The results obtained 
through the use of numerical methods (FDM, FEM) are compared with the 
analytical solutions available in literature. Finally, comments are made related to 
the design of these types of structures. 

 

Key words: plate theories; sandwich composite; governing equations; 
flexural deflection; numerical methods. 

 
1. Introduction 

 
Sandwich panels are used extensively in numerous technical and 

industrial areas, whenever the structures are required to be light, but also 
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strength efficient: aerospace industry, shipbuilding industry, offshore platforms, 
transportation industry, sporting and recreational equipment, etc. (Plantema, 
1966; Vinson, 1999, 2005; Newaz et al., 2013). In the construction industry, 
sandwich panels are used as phonic and thermo-isolators and as claddings and 
roofs for steel buildings (production and storage facilities, sheds, showrooms, 
business centers, hypermarkets, malls, buildings with social, cultural and 
sporting destinations etc.), as well as interior partitioning for production spaces 
in various industries, the creation of cold rooms etc. (www.panoterm.ro; 
www.topanel.ro; panouri.kingspan.ro; Avó de Almeida, 2009). 

American Society for Testing and Materials (ASTM) defines a 
sandwich structure as follows: “A structural sandwich is a special form of a 
laminated composite comprising of a combination of different materials that are 
bonded to each other so as to utilize the properties of each separate component 
to the structural advantage of the whole assembly” (Birman, 2010; Newaz et. 
al., 2013; www.angelfire.com). ASTM standard C274/C274M covers the 
terminology necessary for a basic uniform understanding and usage of the 
language peculiar to structural sandwich constructions. 

Typically a sandwich composite consist of three main parts: two thin, 
stiff and strong faces (skins), separated by a thick, light and weaker core. The 
faces are adhesively bonded to the core to obtain a load transfer between the 
components (www.angelfire.com). 

Commonly used materials for the skins are metallic (steel, stainless 
steel and aluminum alloys) and nonmetallic (plywood, reinforced plastic, fiber 
composites, cement, veneer etc.). 

The cores used in load carrying sandwich constructions can be divided 
into four main groups: corrugated, honeycomb, balsa wood and foams 
(polyurethane, polystyrene produced by expansion or by extrusion etc.). A 
variety of adhesives can be used for special purpose bonding: epoxy resins, 
phenolics, polyurethanes, urethane acrylates, polyester and vinylester resins. 

The skin material usually has a high stiffness, whereas the core 
typically has high compressive and shear strength. When these are bonded 
together, this combination gives the sandwich structure a high flexural modulus 
(www.twi_global...). 

 
2. Plate Theories Used for the Analysis of Sandwich Plates 

 
An overview of main plate theories and their limits of applications can 

be found in (Wang et al., 2000; Qatu, 2004; Reddy, 2004). 
The classical laminate theory (CLT) and the first-order shear 

deformation theory (FSDT) are the most commonly used theories for analyzing 
laminated or sandwich beams, plates and shells in engineering applications 
(Altenbach et al., 2004; Pandya & Kant, 1988; Bari & Bajaj, 2014). 
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Classical laminate theory is a widely accepted macromechanical 
approach for the determination of the mechanical behavior of composite 
laminate (Sezgin, 2008). 

A typical laminate consist of two or more laminae bonded together to 
behave as an integral structural element (Fig. 1). 

Laminated composite materials are generally orthotropic and have very 
good properties in the direction of the reinforcing fibers, but weak properties 
transverse to the fibers (Sezgin, 2008). As a consequence, the laminas are 
oriented in different directions, so the properties of the whole laminate match 
the design requirements. 

 

 
Fig. 1 – A typical laminate with different fiber orientations. 

The stiffness of the composite laminate is derived from the properties of 
its constituent laminas. The procedure implies the analysis of the laminate, 
whose laminas have various orientations about the natural coordinate system or 
a chosen one. As a result, the general behavior of a multidirectional laminate is 
a function of the properties and the stacking sequence of its individual laminas. 

Knowing the strain and stress profile on the laminate’s thickness is 
crucial in order to define the flexural stiffness of the laminate. One of the 
hypotheses of CLT is that the laminas are perfectly glued together, but the 
adhesive layer is infinitesimally thin. As a result, the displacements are 
continuous between the lamina skins, so the lamina cannot slip and the laminate 
behaves as a whole. 
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The internal forces and moments of a laminate are obtained by 
integrating the stresses on each lamina across the laminate thickness. 

The CLT is an extension of Kirchhoff’s classical plate theory for 
homogeneous isotropic plates to laminated composite plates with a reasonably 
high width-to-thickness ratio (Altenbach et al., 2004). 

Equations governing shear deformation theories are typically more 
complicated than those of the classical theory. Hence, it is desirable to establish 
exact relationships between solutions of the classical theory and shear 
deformation theories so that whenever classical theory solutions are available, 
the corresponding solutions of shear deformation theories can be readily 
obtained (Wang et al., 2000). Thus, knowing the plate deflection in the classical 
bending theory (Kirchhoff), the deflection in the first order shear deformation 
theory (Mindlin) can be expressed, both for the homogeneous plate (single 
layer) and for the sandwich plate. 

 
2.1. Bending Behavior of Isotropic Plates in Classical Plate Theory (CPT) 

 
For homogeneous isotropic plates, Kirchhoff’s theory is limited to thin 

plates with ratios of maximum plate deflection w to plate thickness h < 0.2 and 
plate thickness/minimum in-plane dimensions < 0.1 (Altenbach et al., 2004). 

The response parameter of isotropic plates in bending is the flexural 
deflection, w, which in the classical theory is obtained from the biharmonic 
equation (Timoshenko & Woinowski-Krieger, 1968; Wang et al., 2000): 

 2 2 qw
D

   ,                                           (1) 

where: 2 is Laplace operator, which can be written in terms of the rectangular 
coordinates (x, y) for polygonal plates 
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q – the transverse load and D – the flexural rigidity of the plate: 
3

212(1 )
EhD





,                                            (3) 

where E is the Young modulus of the material, υ – Poisson’s ratio, h – the 
thickness of the plate. 

It should be noted that the deflection in any point of the plate is equal to 
the deflection of the middle plane (z = 0), as a consequence of the hypothesis of 
the normal, linear and inextensible segment (Kirchhoff), therefore: 
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0( , , ) ( , )w x y z w x y .                         (4) 

The well-known equation for isotropic Kirchhoff plate bending problem 
(1) can be written as a pair of Poisson equations (Wang et al., 2000; Vrabie & 
Ungureanu, 2012): 

 2 2  a);         b);MM q w
D

                 (5) 

where: M is the moment sum (Marcus moment). 
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In eq. (6) Mx, My are the bending moments in rectangular coordinates. 
In the case of polygonal Kirchhoff plates with straight simply supported 

edges, the boundary conditions associated with Eqs. (5a) and (5b) are given by: 

 0   ;0  Mw .                                          (7) 

On a fixed (or clamped) edge the boundary conditions are given by: 

0   ;0 




n
ww ,          (8) 

and for an unloaded free edge: 

0   ;0* 



 n

ns
nn M

s
MVV .                               (9) 

 
Fig. 2 – The internal moments and forces and the loading on a plate element. 
 

In conditions (8) and (9), for generality, the direction of the normal to 
the edge was denoted with “n”, “s” is the parallel direction to the edge, Vn

* is 
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the generalized shear force, Vn , Mn , Mns are the shear force, bending moment 
and the torsion moment, respectively, on the edge with the “n” normal (Fig. 2). 

If the flexural displacement w is determined by integrating eq. (1), the 
internal moments and shear forces can be written: 
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          (10) 

2.2. First Order Shear Deformation Theory (FSDT) for Sandwich Plates 
 

Consider a general polygonal shaped (Fig. 3 a) sandwich plate. The 
facings of thickness hf and the core of thickness hc (Fig. 3 b) are made of 
isotropic materials, having the following elastic constants: E – Young’s 
modulus of elasticity, ν – Poisson’s ratio, and shear modulus, G, identified by 
the subscript index “f ” for the facings and “c” for the core. 

 

 
    a                                                                          b 

Fig. 3 – Geometry and loading of a sandwich plate: a – general 
polygonal shape; b – plate cross-section. 

 
In FSDT (Mindlin), the transverse shear deformation is considered to be 

continuous and constant on the thickness. As a result, a linear and normal 
segment on the middle plane remains linear and inextensible after deformation, 
but it will rotate after deformation with the angles φx and φy from the initial 
position. Considering the relative small thickness of the two facings, the 
hypothesis of equal rotation of the core and of the facings is accepted. Under 
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these conditions, for the polygonal shaped sandwich plates the moment-
displacement relations are given by (Wang et. al., 2000): 
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where the flexural stiffness of the core, Dc, and of the facings, Df, are: 
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Ks is the shear correction factor (coefficient), typically taken at 5/6 
(Timoshenko & Woinowski-Krieger, 1968; Wang et al., 2000; Qatu, 2004). The 
analysis presented in the (Birman&Bert, 2002) paper results in the conclusion 
that Ks should be taken equal to unity, as a first approximation, for both two-
skin as well as for multi-skin sandwich structures. 

The moment sum of the Mindlin plate theory from eq. (6) becomes: 
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The equilibrium equations of a sandwich plate according to FSDT are the 
same as those of CPT (Timoshenko & Woinowski-Krieger, 1968; Wang et al., 
2000; Szilard, 2004): 

 
 ); 0 );

                 0 ).

y xyx x
x

xy y
y

V MV Mq a V b
x y x y

M M
V c

x y

  
     

   
 

  
 

   (14) 



56                                                Mihai Vrabie and Radu Chiriac 

By substituting into eqs. (14) the moments and shear forces from eqs. 
(11), using the moment sum from eq. (13), and after some processing, the 
following relationships are obtained: 
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If eq. (14 b) is derived by x, eq. (14 c) by y and then by summing them 
up considering eq. (14 a), the following equation is obtained: 
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The moments Mx, My and Mxy from eqs. (11) are replaced in eq. (16) and 
after some convenient processing, considering eq. (13), an extremely compact 
form of eq. (16) is obtained: 
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The moment sum from eq. (15 c), M, can be expressed as:  
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Consequently eq. (17) can also be written: 
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On a straight simply supported edge (with the normal, “n”, and the 
tangential direction “s”) of a polygonal plate, in xy plane, the following 
boundary conditions can be written: 

0;     0;     0n s x yw M l m       ,             (20) 

where l, m are the directional cosines of the normal to the contour. Due to the 
last two  conditions (Mn = φs = 0), on the simply supported edge the condition 
M = 0 is also satisfied. 
 

2.3. Relationships Between CPT and FSDT 
 

In order to avoid the confusion between response parameters from the 
two plate theories, the following superscripts are considered: “K” for CPT 
(Kirchhoff) and “M” for FSDT (Mindlin). 

A first connection between the response parameters from the two plate 
theories is obtained by comparing eq. (5 a) with eq. (19). By using the notation 
with  superscripts previously described and by replacing q from eq. (5 a) into 
eq. (19), the following is obtained: 
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On the boundary of a simply supported polygonal plate, the synthesis of 
the governing equations (eqs. (7) and boundary conditions (9)) in CPT leads to 
the following conditions: 

02  KKK wMw .                                (22) 
In FSDT, the same plate will satisfy the following boundary conditions: 
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Conditions (22) and (23) enable the establishment of connections on the 
boundary of the simply supported polygonal plate, between parameters w and M 
from the two plate theories. 

Finally, the comparison between Eqs. (1) and (21) leads to a 
relationship which links the deflection of the sandwich plate, wM, to the 
parameters, wK and MK, computed for the equivalent homogeneous plate in 
CPT: 
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Eq. (24) allows the sandwich plate deflection calculation using the 
deflection and moment sum of the equivalent single layer plate, deducted from 
the classical plate theory (Kirchhoff). 

 
3. Numerical Investigations 

 
3.1. Geometrical and Mechanical Properties of the Model 

 
The numerical analysis carried out followed the determination of the 

maximum bending deflection for a sandwich panel, whose geometry, boundary 
and loading conditions are show in Fig. 4. 

 

 
a                                                             b 

Fig. 4 – The analyzed plate model: a – geometry and boundary 
conditions; b – cross-section and loading. 

 
The elastic characteristics of the constituent materials are shown in 

Table 1. 

Table 1 
Typical Elastic Properties of Used Face and Core Materials 
Component part Facings Core 

Elastic constants of material Aluminum Extruded polystyrene 
Young's modulus Ef = 71,000 MPa Ec = 12 MPa 
Shear modulus Gf = 26,700 MPa Gc = 4.5 MPa 
Poisson's ratio νf = 0.33 νc = 0.33 

 
 In order to highlight the influence of the layer thickness upon the 
bending stiffness, the total thickness of the plate was kept constant (h = 24 mm) 
and the core and facings thickness, hc and hf, varied. 

The flexural stiffness of the core, Dc, and of the facings, Df , were 
computed using eq. (12), and are shown in Table 2, alongside that of the 
monolayer isotropic homogenous plate (composed of the two facings 
overlapping, without the polystyrene core between them). 
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The graphic in Fig. 5 a shows how the facings stiffness, Df , varies with 
the ratio 2hf / h and the corresponding isotropic plate stiffness, D, depending on 
the thickness 2hf. Fig. 5 b shows how the core stiffness varies depending on the 
ratio hc / h. It was found that the flexural stiffness of the core, Dc, is very small 
(practically negligible) compared to that of the facings, which justifies 
composing the corresponding monolayer isotropic plate from the two facings. 

Table 2 
Flexural Stiffnesses Df , Dc , D for Various Ratios 2hf / h and hc / h 
Thicknesses and ratios Sandwich plate Monocoque plate 

hf  
mm 

hc 
mm 

2hf /h hc/h Df    Nmm Dc  
Nmm 

h = 2hf 
mm 

D 
Nmm 

12.0   0.0 1.0 0.0 91,787,678 – 24.0 91,787,678 
10.8   2.4 0.9 0.1 91,695,890        15.5 21.6 66,913,217 
  9.6   4.8 0.8 0.2 91,053,377      124.1 19.2 46,995,291 
  8.4   7.2 0.7 0.3 89,309,411      418.9 16.8 31,483,174 
  7.2   9.6 0.6 0.4 85,913,267      992.9 14.4 19,826,138 
  6.0 12.0 0.5 0.5 80,314,218   1,939.2 12.0 11,473,460 
  4.8 14.4 0.4 0.6 71,961,540   3,350.9   9.6   5,874,411 
  3.6 16.8 0.3 0.7 60,304,505   5,321.1   7.2   2,478,267 
  2.4 19.2 0.2 0.8 44,792,387   7,942.9   4.8      734,301 
  1.2 21.6 0.1 0.9 24,874,461 11,309.3   2.4        91,788 
  0.0 24.0 0.0 1.0 – 15,513.4   0.0 – 

 

 
Fig. 5 – Flexural stiffnesses variation: a – Df and D; b – Dc. 

 
3.2. Maximum Bending Deflection 

 
Considering the ratio h/min(a,b) = 24/1,000 = 0.024, the analyzed 

sandwich plate fits in the thin plates category. As a result, the Kirchhoff theory 
(CPT) for the monolayer isotropic plate, respectively its extension for the 
multilayer plates (classical laminate theory – CLT), should be satisfactory for 
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the bending behavior analysis. However, the extremely low flexural stiffness of 
the core, compared to that of the facings, makes us wonder if the use of a higher 
order theory is required. In this respect, J. Vinson, in the chapter “Sandwich 
Analysis” from (Santare & Chajes (Eds.), 2008), states the fact that “most 
sandwich structures can be analyzed by using the laminate analysis methods of 
composite material structures by employing the A, B, and D stiffness matrices. 
Only in the case of sandwich constructions which use a very flexible core must a 
higher order sandwich theory be used”. 

Hence, the calculation of the maximum transverse deflection were 
performed using both the classical laminate theory (CLT) and, in particular, 
CPT (for the monolayer isotropic plate), as well as the first order shear 
deformation theory (FSDT). 

For checks and comparisons, the analysis methods used for the classical 
theory were the double trigonometric series method (Navier), the finite 
difference method and the Autodesk Simulation Composite Design software 
(ASCD). For FSDT, alongside the Navier solution and the finite difference 
method, an analysis was performed using the finite elements method (ANSYS 
software), as well as a simulation with a composite laminates analysis software 
(MSC Structural Mechanics Calculators). 

The Navier solution (double trigonometric series method) was applied 
according to the indications in (Reddy, 2004; Reddy, 2006). 

Table 3 
Maximum Flexural Displacement of Sandwich Plate, [mm] 

Thickness CLT (CPT) FSDT 
hf mm hc 

mm Navier MDF ASCD Navier MDF MEF MSC 

 12.0*   0.0 0.221 0.225 – 0.221 0.226 0.208 0.222 
10.8   2.4 0.221 0.225 0.221 0.687 0.685 0.696 0.732 
  9.6   4.8 0.222 0.227 0.225 1.111 1.102 1.129 1.166 
  8.4   7.2 0.227 0.231 0.227 1.472 1.457 1.497 1.532 
  7.2   9.6 0.236 0.241 0.236 1.765 1.746 1.796 1.829 
  6.0 12.0 0.252 0.257 0.252 1.995 1.973 2.032 2.065 
  4.8 14.4 0.282 0.287 0.282 2.179 2.155 2.221 2.257 
  3.6 16.8 0.336 0.343 0.336 2.337 2.313 2.386 2.428 
  2.4 19.2 0.452 0.461 0.452 2.518 2.495 2.575 2.633 
  1.2 21.6 0.814 0.831 0.814 2.914 2.897 2.987 3.090 

    0.8** 22.4 1.180 1.204 1.179 3.285 3.276 3.368 3.513 
* The first line of the table refers to the homogenous isotropic aluminum plate. 
** The last line refers to a real sandwich panel (the hf = 0 line was eliminated,      

because the given load generated very large deflections). 
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The finite difference method for the classical theory assumed the 
Poisson equations, (5), of the monolayer isotropic plate, to be transcribed in 
finite differences in the eight nodes of a mesh with the step Δ = 250 mm 
(because of symmetry, the calculations were performed on a quarter of the 
plate). The values for M and w, were inserted in (24), in order to determine the 
maximum deflection according to FSDT. 

The maximum deflections, calculated using the two plate theories, 
through the above mentioned methods, are shown in Table 3. 

The variation of the maximum deflection of the plate with the core 
thickness is presented in Fig. 6, with values computed for both CPT and FSDT. 

 

 
Fig. 6 – Maximum flexural displacement versus core thickness. 

 
4. Conclusions 

 
Sandwich panels are used in preference to conventional composites 

where the structure is required to have both high flexural strength and low 
weight. A sandwich plate or panel is a special type of laminated composite, in 
which the facings are two thin laminas, but with high strength and flexural 
stiffness, and the core is a “thick” lamina, whose role is to assure the transfer of 
stresses between the facings and to withstand transverse shear. 

In most cases, sandwich plates fit in the thin plate category, for whom 
the classical laminate theory (CLT) is a widely accepted macromechanical 
approach for the determination of the mechanical behavior. Only in the case of 
sandwich constructions which use a very flexible core must a higher order 
sandwich theory be used and also for the very thick ones. 
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The paper presents the main theoretical aspects of the classical theory 
(CPT) for homogenous and isotropic plates, and those of the first order shear 
deformation theory (FSDT) for sandwich plates. Equation (24) allows 
calculating the maximum deflection for FSDT as long as the deflections and the 
Marcus moments are known in CPT for the corresponding homogenous 
isotropic plate. 

The numerical investigations carried out allowed determining the 
maximum bending deflection, using the two plate theories, for a sandwich panel 
with a varying core and facings thickness (total thickness was kept constant). 

The results show a concordance between the analytical solutions and 
those obtained from the numerical methods (FDM, FEM), both in CPT (CLT) 
as well as FSDT. 

The classical plate theory (CPT or CLT), in some cases, greatly 
underpredicts the bending deflections, because its assumptions cannot account 
for the effect of the transverse shear deformations. In these situations, the use of 
a higher order theory is mandatory and/or an experimental verification of the 
results. 

 
REFERENCES 

 
Altenbach H., Altenbach J., Kissing W., Mechanics of Composite Structural Elements. 

Springer Verlag, 2004. 
Avó de Almeida M.I., Structural Behaviour of Composite Sandwich Panels for 

Applications in the Construction Industry. M. Sc. Thesis Extended Abstract, 
Instituto Superior Técnico, Universidade Técnica de Lisboa, 2009. 

Bari D.D., Bajaj P.S., Theoretical Flexural Behaviour of Sandwich Panel Using 
Composite Materials. IJRET Int. J. of Res. in Engng. and Techn., 03, 04 
(2014). 

Birman V., Analysis of Laminated Composite Structures, Chapter 7: Sandwich 
Structures (eec.mst.edu/media/.../eec/.../AE-ME484_Fall_2010_chapter_7. 
pdf). 

Birman V., Bert W.C., On the Choice of Shear Correction Factor in Sandwich 
Structures. J. of Sandwich Struct. and Mater., 4, 83-95 (2002). 

Newaz G., Allman D., Graybill R., Hale S., Ultra-Lightweight Sandwich Composite 
Constructions for Autobody Applications. A Predictive Simulation Approach. 
Executive Report, Nat. Center for Manufact. Sci., 2013. 

Pandya B.N., Kant T., Higher-order shear deformable theories for flexure of sandwich 
plates – Finite element evaluations. Internat. J. of Solids and Struct., 24, 12, 
1267-1286 (1988). 

Plantema F.J., Sandwich constructions: the bending and buckling of sandwich beams, 
plates, and shells. Willey, 1966. 

Qatu M., Vibration of Laminated Shells and Plates. Acad. Press, 2004. 
Reddy J.N., Mechanics of Laminated Composite Plates and Shells Theory and Analysis. 

Sec. Ed., CRC Press, 2004. 



 Bul. Inst. Polit. Iaşi, t. LX (LXIV), f. 4, 2014 63 

Reddy J.N., Theory and Analysis of Elastic Plates and Shells. Sec. Ed., CRC Press, 
2006. 

Santare M., Chajes M. (Eds.), The Mechanics of Solids: History and Evolution. Univ. of 
Delaware Press, 2008, 209. 

Sezgin F.E., Mechanical Behaviour and Modeling of Honeycomb Cored Laminated 
Fiber/Polymer Sandwich Structures. Thesis (Master), Izmir Inst. of Technol., 
2008 (library.iyte.edu.tr/tezler/master/makinamuh/T000703.pdf). 

Szilard R., Theories and Applications of Plate Analysis: Classical, Numerical and 
Engineering Method. John Wiley&Sons, Inc., 2004. 

Timoshenko St., Woinowski-Krieger S., Teoria plăcilor plane şi curbe (in Romanian). 
Ed. Tehnică, Bucureşti, 1968. 

Vinson R.J., The Behaviour of Sandwich Structures of Isotropic and Composite 
Materials. Technomic Publ. Co., Inc., 1999. 

Vinson R.J., Sandwich structures: past, present and future. Springer, 2005. 
Vrabie M., Ungureanu N., Calculul plăcilor – teorie şi aplicaţii (in Romanian). Ed. Soc. 

Acad. “Matei-Teiu Botez”, Iaşi, 2012. 
Wang C.M., Reddy J.N., Lee K.H., Shear Deformable Beams and Plates. Elsevier Sci. 

Ltd., 2000. 
* 

* 
* ANSYS 12 Structural Analysis Guide, 2009. 

* 
* 

* ASTM C247 - 2007 Standard Terminology of Structural Sandwich Constructions. 
* 

* 
* Autodesk Simulation Composite Design (www.firehole.com/products/comppro). 

* 
* 

* MSC Structural Mechanics Calculators (math.materials-sciences.com/webMathema-
tica). 

* 
* 

* www.angelfire.com; www.panoterm.ro; panouri.kinspan.ro; www.topanel.ro; 
www.twi_global...; 

 
 

INVESTIGAŢII ANALITICE ŞI NUMERICE PRIVIND COMPORTAREA LA 
ÎNCOVOIERE A PLĂCILOR SANDVIŞ 

 
(Rezumat) 

 
Se face o trecere în revistă a principalelor teorii utilizate în analiza comportării 

la încovoiere a plăcilor plane neomogene de tip panou sandviş, menţionându-se şi 
limitele lor de aplicabilitate. Având în vedere că în tehnică se folosesc panouri sandviş 
alcătuite din diverse materiale şi cu o mare varietate dimensională, sunt necesare 
investigaţii numerice şi experimentale pentru a stabili, cu precizie acceptabilă, 
parametrii de răspuns la solicitarea de încovoiere. Analizele numerice efectuate se referă 
la săgeata maximă a unui panou sandviş, simplu rezemat pe contur şi încărcat uniform, 
la care se menţine constantă grosimea totală, dar se variază grosimea miezului din 
polistiren extrudat şi grosimea feţelor din aluminiu. Rezultatele obţinute prin metode 
numerice (MDF, MEF) se compară cu soluţiile analitice existente în literatură şi se fac 
observaţii utile în proiectarea unor astfel de structuri. 



 


