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The present paper approaches the problem of plates subjected to transverse loads,
when the shear force and the actual boundary conditions are considered, by using the
Finite Element Method.

The isoparametric finite elements create real facilities in formulating the problems and
great possibilities in creating adequate computer programs.

1. Introduction

The design of thick plates acted by transverse loads, using the thin plate’s theory,
does not correspond to theoretical and practical requirements, but a single theory
could include both categories: thin and thick plates. A great number of research
works about the design of thick plates exists. The most important initiators of this
problem are Reissner and Mindlin [3]..,[5. Each of them proposed a
special model, but they present several difficulties in approaching the plate problems.

In the thin plates theory some important aspects should be taken into account:
the shear force effect, the real boundary conditions, the effect of concentrated forces,
the effect of thickness variation, the effect of holes and other types of stress concen-
trators.

The assumption of neglegting the deformations along the plate thickness is main-
tained, therefore, the axial strain ¢, = 0, z being the axis of the coordinate system,
normal to plate middle plane. The other two axes, & and y, are obviously the or-
thogonal axes in the plate plane.

The pressure between the plate fibers, that is normal stress o, is considered equal
to zero, too.

The assumption of normal line element (Kirchhoff), which is generally used in
the shell theory, is substituted by Mindlin assumption. According to it, a line ele-
ment normal to the middle plane of the undeformed plate remains straight, but not
necessarily normal to the middle plane of the deformed plate. The consequences of
this assumption are the following:

a) The angles bet ween the normal lines to the deformed middle plane and those
to the undeformed riiddle plane are , and p,, in 0Oz plane and yOz plane, res-
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pectively, different from the derivatives dw/dx and dw/dy. Therefore, the three
displacements in a point. w. ;. ¥, are relatively independent ones.

b) The linear displacements. u and v. in a point located at the distance z from
the middle plane. become

(1) = 2gy; V= zigy.

The displacements w, ¢, and », depend on coordinates z, y, while u and v depend
linearly on z, too.

The deformations are further expressed by using Cauchy equations and then, the
stresses are derived, according to Hooke’s law.

The stress (7,. and 7,.) produced by the transverse loads (the shear force effect)
lead to the section warping, because they are non-uniformly distributed over the
plate thickness.

2. Strains. Stress. Internal Forces

The strains are expressed in terms of displacements by using the geometrical
equations (Cauchy equations)
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The constitutive law of the material (Hooke’s law) leads to the following stresses:
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The internal forces and moments are obtained using the equivalence relations

b2 h2

4) (Mo M, M,,) = f(a_r.o_,,.n,_,,]zd:, (Qs,Q,) = /(Tx:,ryz)dz.

—~h/2 —h/2

where h is the plate thickness.
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By introducing the stresses from (3) in (4) and integrating,. it results
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kg is a factor that takes into account the non-uniform distribution of shear stresses,
T,. and 7,.. over the plate thickness.

The previous expressions could be extended to anisotropic plates. as well as to
orthotropic ones.

3. Isoparametric Finite Elements

There are considered guadrilateral finite element with four and eight nodes, de-
fined in natural coordinates, ¢ and 5 (Fig. 1).

Fig. 1.~ Isoparametric finite element.

The axes ¢ and 5 of the coordinate system intersect the quadrilateral sides at
their midpoints.

The system ((O(n) is a dimensionless one. The coordinates of the nodes for
the quadrilateral finite element with four nodes (Fig.1a) are: 1(1, 1); 2(-1, 1);

(-1 1) 4 (L:-1)
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For the finite element with eight nodes (Fig. 1b). the coordinates of the corner
nodes are the same. and the coordinates of the nodes from the side midpoints are:
5(1/2, 0); 6(0.1/2): 7 (~1/2, 0): §(0, -1/2).

For each node. i. three degrees of freedom (DOF) are considered: the deflection,
w;. normal to the middle plane and two slopes, ,, in Oz plane and ¢,, in yO=
plane.

In order to determine the coordinates (z, y) at a point located on the finite
element surface. the nodes coordinates (z,. y,) and the shape functions, N;(,n), are
used.

Similarly. in order to determine the displacements at a point on the finite element
surface. (w. ., @, ), the nodal displacements (w;, ¥,,, ¢y, ), (i = 1,n; n - the number
of nodes) and the sanie shape functions N ((.n) are needed.

The coordinates {z.y) have the following expressions:

(7) D=

m m
Ni(¢,n)z: Y= Z Ni(Cm)ys,
=1 i=1
where m is the number of nodes associated to the finite element. In our cases m =4
and m = 8, respectively.
The displacement field (w, g.,¢,) is defined in a similar manner

m
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The finite element model, which uses the same shape functions for coordinates (z,y)
and displacements. (w. ;. 2, ). is called isoparametric finite element.

3.1. Finite Element with Four DOF

The quadrilateral finite element with the nodes located at its corners is the bi-
linear finite element.

The shape functions. N;((,n), associated to these four nodes could be obtained
by interpolation. and have the form

(9) N = (1—1[1 + GO+ nn).

For the nodes of the finite element shown in Fig.2a, the coordinates ({;,n:), with
the corresponding values: (1. 1); 2( 1, 1); 3(-1, 1) and 4(1, -1) are substituted
in relations (9) and the shape function N,,(z = 1,2,3,4), are determined.

3.2. Finite Element with Eight DOF

The nodes of the finite element are provided at its corners (1,2,3,4) and at the
side midpoints (3.6.7,8).
Functions of Serendip type are used
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a) nodes at the corners

Lo -
(10a) Ni= 301+ GO +mn)(GC +min = 1)

b) nodes at side midpoints

. 1. o ) 1 :
(10b) Ni= 5+ GO0 = %) + 50 (1 = nim)(1 = ¢).

T2

The finite element with four DOF has straight sides, while the sides of the element
with eight DOF could be curved ones.

4. Finite Element Analysis

The carthesian coordinates (r,y) of the points belonging to the finite element
surface are determined according to relation (7), which has a vector form

(i { }=Z:N:'(C-n){ }
Y ' Y

Similarly, the displacements at a point of the finite element, w, ¢, ¢,. are obtained
by (12).

The column vector of nodal displacements at a node of the finite elements is

(12) {dn.} = {wi, 02500}

The column vector of nodal displacements for the whole finite element (4DOF)
has the shape

(13) {dn} = {dn”dﬂg!”-sd\'zm}?-
The column vectors of internal forces could be written according to relation (5)
as
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Taking into account equations (12) it results

( dyy )
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\ r(,,m 7
or
(16) {em} = Z[H-‘rn}{dn.}i
i=1
du. A
d,.,
{eq} = [Ba, Bay---Bai---Baaly  {
L4, )
or
(17) {z0} = Y _[Ba{dn. },
i=1
where
81\"'
0 5% ¢ N,
ON; F
(18) [By]=0|0 0 ——| and [Bg]=0
dy ﬂ 0 N
ON: 0N, o
dy Oz

In order to solve the problem in terms of natural coordinates, relations (17) are
used to obtain the derivatives of shape function, dN;/d¢ and dN;/dn, in terms of
AdN;/0z and dN;/dy.
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The matrices [Byy,] and [By,] could be expressed in the form:
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The derivatives of shape functions with respect to the natural coordinates have
been computed for the two types of isoparametric finite elements:
a) Finite element with four nodes:

AT aN, 1 ;
22 L+ = = 7%l + 6:C)-
(22) aC = 71 +na); on M+ <)
b) Finite element with eight nodes:

by ) for the nodes from the corners

H'\, 1 < l’)\l 1 S T
2 — = —(; (20¢ iy = ol 4+ GOy il
(2) 5o = g6+ mn)(2G + i) ap = (L GO +CG)

b;) for the nodes from the side midpoints

01\ -1, dN; 1 ,
2 —pt) =224 2N Ls ey —ne2 + ¢,

The global strain energy of a finite element is
Ly 1 :
(25) I, = §j{eﬂ,,}""[n_.‘,]{s_,”} dA+ 5 [{EQ}T[DQ]{;—Q}(M +U.,
A " A

where U, is the energy produced by exterior actions.
By using relations (14) and (15), II, becomes

(26) 11, = é{dn}i' Lj'[a_\,JT‘[fJ_\;1[31,1frA + [[Bol"1Dl(Bal | {dn}. dA+ U
n A,

The strain energy is minimized with respect 1o the nodal displacements and the
final relation is

(27) {£.}. = [K].{dn}
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where [k]. is the finite element stiffness matrix and {F}}. - the finite element column
vector of nodal forces.

The relation force — displacement for the whole plate is determined by following
the well-known assembly procedure that takes into account the boundary conditions,
without the restrictions imposed by thin plates theory.

5. Conclusions

1. The isoparametric finite elements ensure an accurate discretization of plates
and by decoupling the displacements; the same functions could be used.

2. The method could be easily extended to elements with variable thickness.

3. The most important aspect of this procedure is the possibility of a unitary
approach of thin and thick plates.
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ASUPRA METODEI ELEMENTULUI FINIT APLICATA PLACILOR PLANE GROASE
(Rezumat)

Se dezvolta metoda elementului finit aplicati placilor plane groase actionate de forfe transver-
sale. Caleulul ia in considerare efectul forfecarii si conditiile la limité reale pentru rezemarile clasice,
incluzandu-se intr-un calcul unitar, atat plicile groase cat si cele subtiri.

Utilizarea elementelor finite izoparametrice crecaza facilitagi in formularea problemelor si disponi-
bilitati pentru realizarea unor programe de caleul performante.



