THE EVALUATION OF LATERAL BUCKLING ON A BENDING BEAM USING THE FINITE ELEMENT METHOD

BY

FLORIN ȚEPEȘ ONEA* and MIRELA POPA

University Ovidius of Constantza, Faculty of Civil Engineering

Received: January 22, 2016
Accepted for publication: February 22, 2016

Abstract. This paper aims to determine the lateral displacement response of a beam which is acted upon by a bending force in the direction of maximum moment of inertia. The initial beam eccentricities are taken into consideration, also a non-linear geometric analysis can be done.

In accordance with Eurocode 3, the verification is performed using the next ratio \(\frac{M_{Ed}}{M_{b,Rd}} < 1 \).

If the ratio yields a result smaller than 1, then we can say that the beam does not lose its lateral stability.

In the proposed study, by using the finite element method, we aim to obtain the vertical force-lateral displacement ratio of a beam which is acted upon by an incrementally static load.

The structural response to the load can be analyzed in comparison with \(M_{b,Rd} \).

Keywords: critical moment; bending; lateral buckling.

1. The Verification of Buckling by Sideway Discharge Using Eurocode 3

In the first phase we shall determine the critical moment as well as the capable moment of the element while taking into consideration the possibility of side buckling. The beam supports are considered as fork types which implies

*Corresponding author: e-mail: tflorin@univ-ovidius.ro
that free buckling can occur. The beam has a length of 12 m and the section from Fig. 1 b.

Geometrical and material characteristics:

Steel S355

\[I_y = 23,415 \text{ cm}^4; \quad W_y = 900 \text{ cm}^3; \quad I_z = 457 \text{ cm}^4. \]

Torsional inertia momentum:

\[I_T = \frac{1}{3} \sum t^3 b = \frac{1}{3} (2 \times 1^3 \times 14 + 0.5^3 \times 50) = 11.4 \text{ cm}^4. \]

(1)

Sectorial inertia momentum:

\[I_w = I_z \left(\frac{h_w + t_f}{2} \right)^2 = 457 \left(\frac{50 + 1}{2} \right)^2 = 97,164 \text{ cm}^6. \]

(2)

Critical momentum calculation:

Double symmetrical section

\[\beta_f = 0.5 \rightarrow z_j = 0 \rightarrow c_3 z_j = 0, \]

\[z_g = \frac{h_w}{2} + t_f = \frac{500}{2} + 10 = 260 \text{ mm}. \]

(3)
The coefficients for the bent structural elements acted upon with direct loads are as follows:

\[c_1 = 1.127; \quad c_2 = 0.454; \quad c_3 = 0.525. \]

Resulting \(M_{cr} = 26 \text{ KN.m}. \)

In order to determine the capable momentum we need a reduced slenderness ratio:

\[\lambda_{LT} = \sqrt{\frac{w_f y}{M_{cr}}} = \sqrt{\frac{900 \times 10^3 \times 355}{26 \times 10^6}} = 3.505. \]

(5)

The buckling reduction factor calculation:

\[\phi_{LT} = 0.5 \left[1 + \alpha \left(\lambda_{LT} - \lambda_{LT,0} \right) + \beta \lambda_{LT}^2 \right] = 5.868, \]

(6)

where: \(\lambda_{LT,0} = 0.4; \quad \beta = 0.75; \quad \alpha = 0.49, \)

\[\lambda_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT} - \beta \lambda_{LT}^2}} = \frac{1}{5.868 + \sqrt{5.868^2 - 0.75 \times 3.505^2}} = 0.092, \]

(7)

\[\frac{1}{\lambda_{LT}^2} = \frac{1}{3.505^2} = 0.081, \]

(8)

\[\lambda_{LT} = \min(0.092; 0.081) = 0.081, \]

(9)

\[M_{b,\text{RD}} = \chi_{LT} \gamma_{M1} W_f y = 0.081 \times \frac{900 \times 10^3 \times 355}{1.0} = 25.88 \text{ KN.m}. \]

(10)

Initially the distributed load was not defined, which resulted in the next criterion:

\[M_{ED} < M_{b,\text{RD}}, \]

(11)

\[M_{ED} = \frac{q^* l^2}{8} \Rightarrow q^* = 1.437 \text{ KN/m}. \]

(12)

This is the maximum load, in accordance with Eurocode 3, under which the studied beam does not lose its stability to lateral buckling.
2. The Verification of Sideway Discharge Buckling Using the Finite Element Method

When a bent bar is acted upon with a load in the direction of its maximum inertia axis, the bar tends to lose its stability by buckling, this implies a lateral displacement (bending in the direction of its minimum inertia axis) as well as a sectional rotation (twisting along the direction of the longitudinal axis).

The element used in the analysis is Plane 3-D, which has the advantage of being able to model the bending of the beam, by using higher grade interpolation functions, thus producing nodes in the middle of the side of the element.

In order to obtain more realistic results, we operate with geometric nonlinearity because when the element loses its lateral stability the displacements are quite considerable, thus deeming necessary the reconstruction of the rigidity matrices for each step of the calculation.

The supports at each end of the beam were modeled as fork type and assure free buckling. The applied load is a uniformly distributed one and was incrementally applied, a maximum distributed load of 10 KN/m was divided in 100 calculation steps.

The imperfection used in the analysis is in accordance with the shape and amplitudes presented in Appendage VIII and sub-chapter VII.1

In Appendage VIII for the initial local imperfections in arch e_0 of the beams (initial curvatures) for the the buckling due to the bending, which are defined using the ratio e_0/l, yield the value of $l/300$.

To the finite element model, an initial imperfection of 4 cm (a curvature of the beam in the arch) was applied. The analysis was performed according to Appendage C of the SR EN 1993-1-5 standard.

<table>
<thead>
<tr>
<th>No.</th>
<th>Material behavior</th>
<th>Geometric behavior</th>
<th>Imperfections</th>
<th>Usage example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linear</td>
<td>Non-linear</td>
<td>Yes</td>
<td>Elastic buckling resistance</td>
</tr>
</tbody>
</table>

3. Conclusions

The finite element method with geometric nonlinearity is used to determine the real value of the load on the beam at which the lateral stability is lost. This is done by interpreting the force-displacement ratios in Figs. 3 and 4.
Fig. 2 – Deformed shape of imperfect beam acted on with a bending force.

Fig. 3 – Force-displacement ratio for node A in Fig. 1b; UX displacement curve in the direction of the eccentricities in the middle of the beam; UY vertical displacement curve.
In the analytical study if the bent beam, by using Eurocode 3, the beam loses its stability by sideways discharge buckling at a load of 1.43 KN/m.

According to Figs. 3 and 4 it can be said that the force-displacement ratio is linear until it reaches a value of 3–4 KN/m after which an asymptotic expansion can be observed.

The interpretation of these results can be made in the sense of a certain load reserve which the beam can handle up until the moment before the stability is lost.

REFERENCES

EVALUAREA FLAMBAJULUI LATERAL PENTRU O GRINDĂ ÎNCOVOIATĂ FOLOSIND ANALIZA PRIN ELEMENTE FINITE

(Rezumat)

Lucrarea își propune să determine răspunsul în deplasări laterale al unei grinzi solicitate la încovoire pe direcția momentului de inerție maxim. Excentricitățile inițiale
ale grinzii se iau în considerare, deasemenea poate fi realizată și o analiză geometric nelineară.

Conform Eurocode 3 verificarea se face folosind relația \(\frac{M_{Ed}}{M_{b, RD}} < 1 \). Dacă relația este îndeplinită, grinda nu își pierde stabilitatea laterală.

În studiul propus, printr-o analiză cu FEM, pentru grinda încovoiată se dorește să se obțină relația forță verticală-deplasare laterală pentru o încărcare statică incrementală.

Răspunsul structurii la încărcare poate fi analizat comparativ cu \(M_{b, RD} \).