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The aim of this paper is to propose an original optimization approach using the con-
cept of computational design of experiments and response surface methodology to check
the curvature in numerical experiments. Generally, for the study of the strongly nonlinear
phenomena, it is recommended to use a second-order model. This paper proposes a new
technique to estimate a quadratic effect for a model based on finite element simulations and
the Design of Experiments. Therefore, it is very important that the proposed technique
(adding center points) controls other properties of the design matrix, especially orthogo-
nality for the response surface methodology and brings more information for the quality of
the proposed model. The computational design of experiments is considered an advantage
in comparison with design of physical experiments because generally computer solutions
cost less than physical testing. The bending process optimization is used to improve the
performances of this approach.

1. Introduction

Sheet metal L-bending processes are widely used for mass production. The de-
sign of bending processes is connected with time consuming and costly experiments.
Therefore, the finite element simulation of the process could be a helpful tool for the
designer and quality assurance of the products. After bending, springback occurs
upon the removal of the tool (Fig.1) [8], [12], [21], [30].

Fig. 1.- Processes sequence during L-bending
and springback [Int.1].
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As lead times are shortened and materials of higher strength are used in manufac-
turing, the simulation of springback following sheet forming is essential for optimal
designing of tooling and processes. Traditional trial-and-error methods are time con-
suming and expensive, while empirical rule-based adjustments for springback [13] are
not usually applicable to complex geometries or materials without a large database
of experience.

The leading L-bending parameters that affect the process [31] are the die corner
radius (Ry). punch-die clearance (c), punch radius (R,). pad force (Fpaq) and sheet
metal thickness (¢) (Fig.2). In this study among the L-bending parameters, only the
effect of the die radius, clearance and sheet metal thickness are investigated.

Foua = 850 N

L =50 mm

Rr. = Rpad = 2.5 mm
R, — variable

¢ — variable

t — variable

Fig. 2.~ Model of L-bending operation.

Optimization of the process by the classical method involves changing one in-
dependent variable (radius, clearance, sheet metal thickness, etc.) while fixing all
others at a fixed level [10], [26], [29]. If it is used the classical method (one at the
time) for each independent variable, that is extremely time consuming and expensive
for a large number of variables. To overcome this difficulty. experimental factorial
design and response methodology can be employed to optimize medium components
3], [5], [18], [24], [25]. The response to be optimized (springback) (4], [11], [17], [20],
[23], [30] constitutes the principal difficulty to control during the bending process,
and involves a dimensional variation of the manufactured pieces. The aim of this
work is to include the optimization of the L-bending process. The use of computa-
tional experimental design [4], [7], [9], [27] and Response Surface Methodology (RSM)
(2], [3], [24] has been successfully applied to optimize metal bending processes. A
new technique to estimate the curvature of the quadratic model for the numerical
simulations is proposed in this paper. ABAQUS finite element code is used to real-
ize the numerical simulations. Computational Design Of Experiments (CDOE) and
RSM were used to optimize the value of three factors (die corner radius. punch-die
clearance and sheet metal thickness). In section two we present the behavior of the
sheet modeling and, thereafter, in section three, we study the numerical simulation
of L-bending process. The fourth section makes an introduction to RSM for passing
afterwards in the section five to explain the new techuique to check the curvatice of
the CDOE. The paper finishes with the conclusions.



Bul. Inst. Palit. Iasi. t. LIT (LVI), f. 1-2, 2006 67

2. Modelling of the Sheet Behavior

The algorithms generally implemented in the finite element codes for integra-
tion of nonlinear constitutive equations are the so-called radial return algorithms
(ABAQUS), and they are used to solve the equations in an incremental form. The
integration methods of the nonlinear constitutive equations are based on the use of a
special algorithm, which solves the equations in incremental form. For this purpose,
during a small time interval, [t.. t,,,], it is assumed that the whole increment is
purely elastic, then an elastic prediction is defined as

(l) 0’3‘_'_1 = o, + Ag,

where o, is a stress tensor at increment n, 7,;, - a stress tensor at increment n + 1
and Ao — the stress increment. The superscript refers to Trial test. The eguation
(1) can be written as

§ T _to .
(2) Tns1 = Calery, — b)),
where: (., is the elastic modulus tensor, ety - the total strain tensor at increment
n+1 and €' - the plastic strain tensor at increment n.

The yield criterion defining the plastic flow is given by the von Mises stress
function

(3) f= Teq — (0y+00}a

¢
where: o, is the von Mises stress, o, - the yield stress and op - the strain hardening

law. If this elastic prediction satisfies the yield condition f < 0, the prediction is
true and the local procedure is completed. Then it can be stated that

(4) Ontl = 0':4-1-

Otherwise, this state must be corrected by means of a plastic correction. For this
purpose, the variables at increment n + 1 must satisfy the system (ABAQUS)

f=0,
Tpg1 — C"el(-‘-_flm + Ae — Sﬁl - AEPI] = 0.

where: £°" is the total strain tensor at increment n, A - the total strain increment.
ePl  the plastic strain tensor at increment n, and AzP — the plastic strain increment.

3. Simulation of L-bending Operation

The problem studied here considers bending of 4 mm thick sheet metal. The
geometry of the process with all dimensions is shown in Fig. 2.
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The meshing of the model is carried out by means of 420 quadrangular four node
continuum elements (Fig. 3). Four layers of finite element have been assigned in the
thickness. The plastic properties of the sheet metal part are assumed to be isotropic,
described by the von Mises yield function with the corresponding strain hardening

law given by (ABAQUS)
[6) Og = 0y =+ I\I{Seq)n:

where: c.q is equivalent plastic strain, n - the dimensionless strain hardening expo-
nent and A — the bulk modulus.

The mechanical characteristics (where E is the Young's modulus and v - the
Poisson’s ratio) of the material obtained by a tensile test, are given in Table 1.

Table 1
Matertal Characteristics
Material E,[MPa] | v | o, [MPa] | K, [MPa] | n
Steel X6CrNiTi18 10 210,000 0.3 250 1,045 0.2

Contact at the interfaces between the sheet and the tool is modeled by adopting a
rigid body hypothesis using contact surface laws defined by a Coulomb friction model,
Typical values of the friction coefficient are given in [16], [19] for a combination of
contacting materials. For steel/steel contact, typical value of the friction coefficient
is equal to 0.1 The computation results corresponding to different displacement steps
of the punch penetration are presented in Fig.3. It can be seen that the springback
takes place when the punch is removed from the simulation.

Fig. 3.~ Deformed configuration at different steps: (d) springback.

4. Concept of Response Surface Methodology

RSM consists of a group of empirical techniques [2], [3], [24] devoted to the
evaluation of relations existing between a cluster of controlled experimental factors
and the measured responses, according to one or more selected criteria [5]. [18].
Prior knowledge and understanding of the process and the process variables under
investigation are necessary for achieving a realistic model.

RSM provides an approximate relationship between a true response, y, and k
design variables, which is based on the obscrved data from the process or system.
The response is generally obtained from real experiments or computer simulations.
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and the true response, y, is the expected response. Thus, computer simulations are
performed in this paper. It is supposed that the true response, y. can be written as

(TJ y = F(:rl:'rzs"-s'rk]a

where the variables x;, r,, ..., 2 are expressed in natural units of a measurement, so
they are called “natural variables”. Usually, the approximating function, F, of the
true response, y. is chosen to be either a first-order or a second-order polynomial
model. which is based on a Taylor series expansion. In this study, the second-order
model given by

k k ko k
(8) y=P8+) Bixi+Y Buxl+ 35 Biziz; +e,

1=1 1=1 l—:(}j— 1
is retained to describe the springback response and to verify the nonlinearity of the
process, where: Jg. 3; . 8, and B,;, are called regression coeflicients, and e represent
the noise or the error observed in the response y [24].

For a given material to be manufactured and a given geometry. a cause and effect
analysis was done to identify primary and secondary causes resulting in springback
of the workpiece. Out of the number of factors identified, the following factors were
considered to be most important and necessary to control (Fig. 2):

1. Die corner radins ( R,).

2. Punch-die clearance (¢).

3. Sheet metal thickness ().

4. Type of material.

5. Force to be applied to the blankholder (Fpaq).

Among those lcading factors, the die corner radius, the clearance and the sheet

metal thickness have been retained, after the screening study, to reduce the spring-
back.

5. A New Technique to Check the Curvature of the CDOE

This paper proposes to use an CDOE, which is based on a new technique to check
the curvature. combined with a Finite-Element Analysis (FEA) code to generate the
numerical simulated data. This technique consists of adding center points small
shifted, reported at the center point (Fig.4), obtained by numerical simulations,
too. Several numerical simulations were performed in order to determine with more
accuracy the maximum distance to the shifted points (d;, = 0.046d — Fig.4). This
technique is used where the studied problem is a very complex phenomenon and the
response function is not adequately modeled by the first-order model. In such cases,
a logical model to cousider is given by Eq. (8).

One important reason for adding the replicate runs at the design center is that
center points do not affect the usual effect estimates in a 2¥ design and this permits
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to check the curvature for the second-order response surface model (Eq. (8)). There-
fore, the use of higher-order terms increased the precision of the prediction and was
important for the optimization of the variable levels. The number of center points
controls other properties of the design matrix and many information are added for
the proposed model.

For a single degree of freedom is associated a non-null hypothesis

k
(9) Hy:) B3, #0;
=1

the sum of the squares for quadratic curvature is given by [24]

(10) SSpure—-quadratic = -

where: SSpure-quadratic 1s the sum of squares for quadratic curvature, np - the number
of factorial design points 2%, k - the number of the study’s factors, n -~ the number
of runs in the center points, 7 - the average for the runs in the factorial design,
¥o - the average for the runs in the center points.

The mean square error is calculated from the center point with relation

Tie 2
S$Sg g(y: y)

'ﬂ.C—l nc_l

(11) MSg = ;
where: SSg is the sum of square error for the center points, y; — the 7 value for the
center points and 7 - the average for all center points.

Comparing SSpure—quadratic t0 MSE (Fratio) gives a lack-of-fit statistic. If this value
(Fratio) is greater than the critical value (Fiese -~ Fisher test), there is an indication
of a pure quadratic effect. This Fi.s procedure provides an objective method for
determining whether or not the model has a pure quadratic effect i.e.

(12) Fral.in = bspurﬁ{quadraﬂqu" 1 (13) Fl.esl = P’(O‘, vy, V2)y
MSg
where: a - alpha risk is defined as the risk of rejecting the non-null hypothesis when
in fact it is true, and vy, v, — the degrees of freedom for the numerator and the
denominator, respectively.
After the screening study, the important variables for the springback in the ben-
ding process are shown in Table 2.

Table 2
Order of Importance of the Variables
Variables Worked | Importance
variables order
1 | Die corner radius A 1
2 | Clearance B 3
3 | Sheet metal thickness C 2
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For this study it is assumed that the three factors are quantitative. The design
space of the three design variables in both coded and original format is listed in

Table 3.

Table 3
Design Variables and their Coded Value

Design Star | Lower | Middle | Upper | Star

variables point | bound | point | bound | point
Coded value -3 -1 0 1 +4
Die corner radius 3.32 4 5 6 6.68
Sheet metal thickness | 2.66 3 3.50 4 4.34
Clearance 0.318 1 2 3 3.68

In order to check the curvature the center points (Table 4), situated at the same
distance reported for the center, are added (Fig.4).

Table 4
Factorial Design with Multiple Center
Points for Checking the Curvature

A B C Y
1 -1 -1 -1 2.7433
2 1 -1 -1 3.1858
3 e ¢ 1 1 2.5727
4 1 | -1 2.8683
H -1 -1 1 3.0503
6 1 1 1 3.4928
T -1 1 1 2.8797
8 1 1 1 3.1753
9 0 0 0 2.9625
10 0 0 0 2.9676
11 0 0 0 2.9712
2 g g 2 .2'98§5 Fig. 4.— Adding center points
A g 0 2 24018 for checking the curvature.
14 0 0 0 2.9551 )
15 0 0 0 2.9699

Using relations (10),...,(12) the following results are obtained:

8 x 7(2.996 — 2.971)?

(14) Sspure—-quadratic o 817 ="2.322-x 10"3,
; 104

(15) MSg = 8068% = 1.3446 x 10~*.

If

(lbj Fratio 2 Fmsh

H, is accepted.
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In the studied case
(17) Fratin = 17.268 > F1(U.U5,l,ﬁ) = 5.99.

The analysis presented here indicates that there is evidence of second-order cur-
vature in the response in the region of exploration. That is, the non-null hypothesis

(18) Hy : B+ Baz+ Bz #0

is accepted.

To illustrate the non-null hypothesis, it is considered in the following two cases
using Central Composite Design (CCD) with a single center point and CCD with
the new purpose technique (multiple center points).

5.1. Central Composite Design with a Single Center

The first case in the study consisted of a classical CCD (Table 5) with a single
center point (for the computational experiments). The inclusion of the axial and
the center points enabled the determination of curvature in the mathematical model

(Eq. (8)).

Table 5
CCD with a Single Center Point
A B (o} Y
1 -1 -1 -1 2.7433
2 1 -1 -1 3.1858
3 -1 1 -1 2.5727
1 1 1 -1 2.8683
5 -1 -1 1 3.0503
6 1 -1 1 3.4928
7 -1 1 1 2.8797
8 1 1 1 3.1753
9 ~1.682 0 0 2.682
10 1.682 0 0 3.3064
11 0 -1.682 0 3.2629
12 0 1.682 0 2.8272
13 0 0 -1.682 | 2.6059
14 0 0 1.682 | 3.1741
15 0 0 0 2.9625

The Pareto diagram (Fig.5) shows a significant quadratic effect (Q) for the
variable B (clearance). The same results are obtained by ANalysis Of VAriance
(ANOVA) (Table 6).
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Table 6
Analysis of Variance
ANOVA - Variable Y
R? = (.9983; Aj = 0.9966
Variables SS dl MS F P

A (Linear) 0.467330 1 | 0.467330 | 1,117.435 | 0.000000
A (Quadratic) | 0.001585 1 0.001585 3.791 | 0.109094
B (Linear) 0.213852 1 0.213852 511.343 | 0.000003
B (Quadratic) | 0.007063 1 0.007063 16.888 | 0.009269
C (Linear) 0.349137 | 1 | 0.349137 834.824 | 0.000001
C (Quadratic) | 0.002581 1 0.002581 6.172 | 0.055540
A(L) *B(L) 0.010790 | 1 0.010790 25.800 | 0.003837
A(L) =C(L) 0.000000 | 1 | 0.000000 0.000 | 1.000000
B(L) *C(L) 0.000000 | 1 | 0.000000 0.000 | 1.000000
Error 0.002091 | 5 | 0.000418
Total SS 1.068981 | 14

Pareto Chant of Standardizeda Effects; Variable: |
3 factors, 1 Blocks, 15 Runs: MS Residual= 0004182
ov:. ¥
p=05

AlLinsar) ? 3:24280!
C(Linear) i

BiLinear)
A(Linear) B (Linear
B(Quadratic)

C (Quadratic)

A (Quadratic)
AlLinear) {Linear
B(Linear) C(Linear)

-5 o 5 10 15 20 26 30 as 40
Effect Estimate, [ Absolute Value]

Fig. 5.- Pareto diagram in case of central composite
design with a single center.

The response surface equation obtained by regression analysis for the proposed
model (with a single center point) is given by

(19) Y =2.992+0.1854 — 0.125 B + 0.16 C + 0.0241 B2 — 0.037 AB,

where : A is the die corner radius, B — the clearance and €' - the sheet metal

Fig. 6.— Response surface for the interaction AB.
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thickness. Fig.6 shows the response surface for the interaction between variables A
and B.

5.2. Central Composite Design with the New Technique (Multiple Center Points)

The second case in the study consisted of a CCD with the new technique (multiple
center points — replicate points for the real experiments). For the classical CCD six
points small shifted reported off the center points are added (Table 7 - runs 16.....21).
The response function (springback) is obtained by numerical simulations, too.

Table 7
CCD with a Multiple Center Points
A B C Y
1 -1 -1 -1 2.7433
2 1 -1 -1 3.1858
3 -1 1 -1 25727
4 1 1 -1 2.8683
6] -1 -1 1 3.0503
6 1 -1 1 3.4928
7 -1 1 1 2.8797
8 1 1 1 3.1753
9 1.682 0 0 2.682
10 1.682 0 0 3.3064
11 0 -1.682 0 3.2629
12 0 1.682 0 2.8272
13 0 0 -1.682 | 2.6059
14 0 0 1.682 | 3.1741
15 0 0 0 2.9625
16 0 0 0 2.9676
17 0 0 0 2.9712
18 0 0 0 2.9835
19 0 0 0 2.9878
20 0 0 0 2.9551
21 0 0 0 2.9699
Pareto Char of Effects; Vari 4
3 tactors, 1 Blocks. 21 Runs: MS Resdual= 0002674
ov: ¥
p=.05
Af{Linear) 7 7] 41,0053
(" (Linaar)
BiLinaar)
B (Quadratic) 7 181824

AlLinear) BiLinaar)
C(Qundmtic)
A(Quadratic)

AtLinear) C(Linear)

638303

B{Linear) CiLinesar)|

-5 [ s 10 15 20 25 30 3s a0 45 50
Effect Estimate. | Absolute Valus|

Fig. 7.— Pareto diagram in case of central
composite design with the new proposed techuique.



Bul. Inst. Polit. lasi, t. LII (LV1), . 1-2. 2006 75

The Pareto diagram of Fig.7 shows a significant quadratic effect (Q) for the
variables C' (sheet metal thickness) and A (die corner radius) additionally to the
existing variable B (clearance). The observation is in accordance with the analysis
of variance (Table 8). This observation proves that adding the center points for
the numerical design of experiments controls other properties of the design matrix
(uniform precision) and gives additional information (quadratic effect. Q. for the
variables C' and A) for the performance of the proposed model and a better quality
for the working model. For this reason the center points are called control runs.

Table 8
Analysis of Variance for the Second Case
ANOVA - Variable Y
R? = 0.9983; 4j = 0.9966
Variables S8 dl MS F P

A (Linear) 0.467330 | 1 | 0.467330 | 1,117.435 | 0.000000
A (Quadratic) | 0.001585 | 1 | 0.001585 3.791 | 0.109094
B (Linear) 0.213852 1 0.213852 511.343 | 0.000003
B (Quadratic) | 0.007063 | 1 | 0.007063 16.888 | 0.009269
C (Linear) 0.349137 | 1 | 0.349137 834.824 | 0.000001
C (Quadratic) | 0.002581 1 | 0.002581 6.172 | 0.055540
A(L) *B(L) 0.010790 | 1 | 0.010790 25.800 | 0.003837
A(L) *C(L) 0.000000 | 1 | 0.000000 0.000 | 1.000000
B(L) *C(L) 0.000000 | 1 | 0.000000 0.000 | 1.000000
Error 0.002091 | 5 | 0.000418

Total SS§ 1.068981 | 14

5.3. Backward Stepwise Regression Method

Stepwise regression is a technique for choosing the variables, that is. terms, to
include in a multiple regression model [22]. Forward stepwise regression starts with
no model terms. At each step, it adds the most statistically significant term (the
one with the highest F' statistic or lowest p-value) until there is none left. Backward
stepwise regression starts with all the terms in the model and removes the least
significant terms until all the remaining terms are statistically significant. It is also
possible to start with a subset of all the terms and then add significant terms or
remove insignificant terms.

Backward stepwise regression analysis gives the following fitted model (with mul-
tiple center points) expressed in coded values

(20) Y'=2.97140.185 4—0.125 B+0.16 C'+0.0122 A*40.03 B*—0.025 ("*—0.037 AB.

The R* =0.9986 value shows the best quality of the fitted model. One of the
advantages of using the stepwise regression analysis procedure is that it can take
care of the multicollinearity problem, which could be present in the data as some
variables may be highly correlated.
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6. Conclusions

In this paper a sheet metal bending process optimization method for springback
minimization is proposed that combines Finite Element Analysis, Response Surface
Method and Computational Design Of Experiments.

This work proposed a new technique to check the curvature using RSM in com-
putational experiments. By this technique a center points runs to provide a check
for both process stability and possible curvature were added.

In RSM, the number of center points controls other properties of the design ma-
trix. The number of center points can make the design orthogonal or have “uniform
precision” which offers more protection against bias in the regression coefficients than
does an orthogonal design because of the presence of the higher terms in the true
response surface.

This method is especially dedicated for Computational Design of Experiments
and it will help to:

a) obtain an information for process variability;

b) test the quadratic effect or possibly curvature;

c) test the model validity:

d) increase the model quality.

The numerical simulations in this work were obtained using the ABAQUS. A
Python script program has been developed to automatically parameterize the
ABAQUS computations, which result from different configurations of the designs
of experiments used.
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UN NOU PLAN DE EXPERIENTE NUMERICE
PENTRU OPTIMIZAREA PROCESELOR

Aplicatie pentru procesul de pliere
(Rezumat)

Se propune o metodi originala de optimizare utilizand conceptul de planuri de experiente nu-
merice §i metodologia suprafetelor de raspuns pentru verificarea curburii unor modele obtinute
prin simulare numerica. In general pentru studiul fenomenelor neliniare se recomanda utilizarea
modelelor de ordinul doi. Prin consecinii este foarte important de precizat faptul cd aceasta
metodi (adiugarea de puncte centrale) controleazi alte proprietati ale matricei de experiente m
special ortogonalitatea, in particular pentru metodologia suprafetelor de raspuns gi aduce mai multe
informatii asupra calitatii modelului propus. Planurile de experient{a numerice sunt considerate mai
avantajoase in raport cu experientele fizice din cauza faptului ca simuldrile numerice au un cost mult
mai redus. Optimizarea procesului de pliere este utilizatd pentru a arédta performantele metodei.



