BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI Publicat de Universitatea Tehnică "Gheorghe Asachi" din Iași Volumul 62 (66), Numărul 4, 2016 Secția CONSTRUCȚII. ARHITECTURĂ

ALLOWABLE PRESSURE FOR RIGID STRIP FOUNDATIONS

ΒY

FLORIN BEJAN^{*} and IANCU-BOGDAN TEODORU

"Gheorghe Asachi" Technical University of Iaşi, Faculty of Civil Engineering and Building Services,

Received: October 15, 2016 Accepted for publication: November 22, 2016

Abstract. The design of foundations is done considering both the strength and the settlement of the soil, under expected loading conditions and soil conditions. In the case of ordinary buildings founded on favourable ground the design can be done using prescriptive design procedures – comparing the actual pressures with the allowable pressures. The values for the allowable pressure (conventional pressure), provided in the Romanian technical regulations, are established empirically. New values for the allowable pressure for rigid strip foundations were proposed. The study showed that the values of the allowable pressure corresponding to a settlement of 6 cm are lower than the values of the conventional pressures, plastic pressures and the ultimate pressure obtained using the specifications from the Romanian technical regulations.

Keywords: limit state; foundation; bearing capacity; allowable settlement; finite element method.

1. Introduction

In the case of ordinary buildings founded on favourable ground the design can be done using prescriptive design procedures – comparing the actual pressures with the allowable pressures (conventional pressures). The allowable pressure can be established by dividing the ultimate bearing capacity by a factor

^{*}Corresponding author: *e-mail:* florin.bejan@tuiasi.ro

of safety (typically 3.0) or by determining the bearing pressure which corresponds to an acceptable level of settlement. For example, for multi-story building with structural walls made from panels or bricks masonry, without reinforcement, the medium settlement, s_m , has the acceptable level of 10 cm (Annex H from NP 112-2014).

The aim of the SLS check is to prove that any displacement or deformation of the foundation, as effect of the ground deformation, does not exceed limiting values of structural deformation and foundation movement. The methods based on the theory of elasticity should be used only if the stresses in the ground are such that no significant yielding occurs and if the stress-strain behaviour of the ground may be considered to be linear. So, another SLS design criteria involves limiting the design pressures applied through the footing to the ground at the value of the initial critical pressure. In this context, the allowable pressure is the initial critical pressure which is the limiting pressure corresponding to a certain development of the plastic point (Bejan, 2013a; Stanciu, 1994). In the Russian (SNIP 2.02.01.-83) and the Romanian (NP 112:2014) technical regulations the development of the plastic points (points where the shear stress equals the shear strength) is limited to a depth equal to a quarter from the foundation width ($z_{max} = B/4$):

$$p_{\rm pl} = m_l p_{\rm cr.in.} = m_l \left(\gamma B N_1 + q N_2 + c N_3 \right), \tag{1}$$

where m_l is the coefficient of working conditions (Table H.7, NP 112:2014); γ – the soil weight density, q – the overload at the footing level and laterally displayed from it ($q = \gamma D_f$), D_f is the foundation depth, c is cohesion of the soil and N_1 , N_2 , N_3 are coefficients that depend on the angle of shearing resistance (ϕ).

$$N_1 = \frac{0.25\pi}{\cot\phi - \pi/2 + \phi}; N_2 = 1 + \frac{\pi}{\cot\phi - \pi/2 + \phi}; N_3 = \frac{\pi\cot\phi}{\cot\phi - \pi/2 + \phi}.$$
 (2)

Multiplying the initial critical pressure with a coefficient greater than one ($m_l = 1.1 - 2.0$) leads to a greater development of the plastic points and so to violation of the linear deformable hypothesis.

Another problem that appear here is that the initial critical pressure is established for a half space acted by a uniform distributed pressure. In reality, the soil pressure distribution under the footing is not uniform. In this conditions, the values of the limit pressure which determines the development of the plastic points to a depth equal with B/4 are smaller because the stresses concentrate at the footing edges and the stresses are redistributed from the plasticized zone to the elastic zones (Bejan, 2013a; Bejan, 2013b).

The source of the conventional pressure values provided in the Romanian technical regulations is not known. Thus, in this work, through back analysis, were proposed new values for the allowable pressure for rigid strip foundations. For this, in the first stage were established the pressure-settlement curves for rigid strip foundations founded on different types of soils using the guidance values of geotechnical parameters recommended in NP 122:2010 (Table 1). The values of the pressures corresponding to certain values of settlements (2, 4, 6 and 8) – the allowable pressure, obtained from the pressure-settlement curves, are compared with the conventional pressures, plastic pressures and the ultimate pressure obtained using the specifications from the Romanian technical regulations.

2. Definition of the problem

The allowable pressure represents the value of the pressure that causes certain settlements compatible with the structural system without losing the stability of the ground-foundation-structure system. In this paper, it is evaluated the allowable pressure for rigid strip foundations acted by vertical loads using the finite element method (FEM) implemented in the Plaxis2D software. For this purpose, the numerical formulation of the Mohr-Coulomb linear elastic-perfectly plastic model (MC) was used with a triangular mesh of 15 nodes elements (Fig. 1).

Fig. 1 – The model used for the evaluation of the allowable pressure.

The vertical force acting on the rigid strip foundation, with 1.0 m width, was taken in account, in the model, by imposing a uniform settlement (*s*). The effect of soil above the footing level is considered through the overload $q = \gamma \cdot D_f$ (Fig. 1).

Table 1 The Guidance Values of the Geotechnical Parameters Used for the Determination of the Allowable Pressures for Rigid Strip Foundations

			Cohe	nsion	less s	oils		Co	hesiv	esive soils with $S \ge 0.8$				
e	uo, e mical iistics sands sands		/el ds	s			$I_P <$	10%	10	$\begin{array}{c c} 10\% < I_P < \\ < 20\% \end{array} \qquad I_P > 20\%$				
tio,			grav sanc	pun	ds	ds				Ι	С			
Void rat	Geotech charactei	Unit	Sands with g and coarse s	Medium s	Fine san	Silty san	0.75 - 1.00	0.25 - 0.75	0.75 - 1.00	0.50 - 0.75	0.25 - 0.50	0.75 - 1.00	0.50 - 0.75	0.25 - 0.50
	ϕ	0	36	33	31	30	25	23	22	20				
0.45	С	kPa	0	0	0	0	10	8	30	25				
0.45	γ	kN/m ³	18	18	18	18	20	20	20.5	20.5				
	E	MPa	40)	35	30	32	30	34	32				
	ϕ	0	33	31	30	28	24	22	21	19		17		
0 55	С	kPa	0	0	0	0	7	6	24	22		53		
0.00	γ	kN/m ³	17	17	17	17	19.5	19.5	20	20		20.5		
	E	MPa	40)	35	30	24	22	27	25	1.6	28	1.5	10
	φ	-1-D-	33	31	27	24	22	20	20	18	16	16	15	12
0.65	С	KPa	0	0	0	0) 10	4	20	18	10 5	44	3/	29
	γ Γ	KIN/III	10	10	10	10	19	19	19.5	19.5	19.5	20	20	20
	E	MPa	30)	25	18	10	14	22	19	17	24	21	18
	φ	1.D			23	22		1/	19	1/	15	15	14	11
0.75	С	kPa			0	0		2	16	15	13	35	33	27
	γ	kN/m ³			15	15		18.5	19	19	19	19.5	19.5	19.5
	E	MPa			18	11		10	17	14	11	21	18	15
	ϕ	0							18	16	13	15	13	10
0.85	С	kPa							18	15	13	31	28	23
0.05	γ	kN/m ³							18.5	18.5	18.5	19	19	19
	Ε	MPa							14	11	8	18	15	12
	ϕ	0							16	14	11	13	11	8
0.05	С	kPa							12	10	9	27	24	21
0.95	γ	kN/m ³							18	18	18	18.5	18.5	18.5
	Ε	MPa							11	8	5	15	12	9
	ϕ	0									10	11	9	5
1.07	с	kPa									7	24	21	19
1.05	γ	kN/m ³									18	18	18	18
	Ē	MPa									3	12	9	7
	v	—		0.	3			0.	35		0.4			

The values of the geotechnical parameters (γ – weight density, ϕ – angle of shear resistance, *c* – cohesion, *E* – elastic modulus and *v* – Poisson's coefficient), used for modelling the foundation soil, are centralized in Table 1. These values have been taken from Annex A6 of NP 122:2010.

The conventional pressures, p_{conv} , are determined by interpolating values from tables D1 to D5 from Annex D, NP 112:2014.

The initial critical pressures (plastic pressures) are determined using the relationship from Annex H.5 from NP 112:2014 for foundations with the width (B) of 1.00 m and the foundation depth (D_f) of 2.00 m. The values of the weight density, cohesion and internal friction angle are equal with the characteristic values from Table 1, because in the case of SLS the partial safety coefficients are equal with 1.

The ultimate pressures are determined using the relationship from Annex F from NP 112:2014 for foundations with width B = 1.00 m and foundation depth $D_f = 2.00$ m.

$$p_{\rm ul} = \gamma B N_{\gamma} + q N_q + c N_c, \tag{3}$$

where γ is the soil weight density, q – the overload at the footing level and laterally displayed from it ($q = \gamma D_f$), D_f is the foundation depth, c – cohesion of the soil and N_{γ} , N_q , N_c are coefficients that depend on the angle of shearing resistance (ϕ).

$$N_q = \tan^2 \left(45 + \frac{\phi}{2} \right) e^{\pi \tan \phi}; \ N_c = (N_1 - 1) \cot \phi; \ N_\gamma = 2 \left(N_q - 1 \right) \tan \phi.$$
(4)

The evaluation of the ultimate critical pressure is done taking into account the partial factors corresponding to the Design Approaches (Annex B from NP 112:2014). Thereby, for the Design Approach 1, Combination 1 (DA1C1) the value of weight density is obtained by multiplying the characteristic values from Table 1 with a partial factor of 1.35 and the design values of the cohesion and angle of shear resistance by multiplying the characteristic values from Table 1 with a coefficient of 1.00. For the Design Approach 1, Combination 2 (DA1C2) the design value of the weight density is identic with the characteristic value from Table 1, the design value of the cohesion is obtained by multiplying the characteristic values from Table 1 with a coefficient of 1.40 and the design values of the angle of shear resistance are obtained by multiplying the characteristic values with a partial factor of 1.25 (applied to the tangent).

3. Results

3.1. The Allowable Pressures for Cohesive Soils with $I_P > 20\%$

The pressure-settlement curves, for cohesive soils with $I_P > 20\%$, are obtained using the Plaxis2D software (Fig. 2). In this case, the values of the pressures corresponding to settlements of 2, 4, 6 and 8 cm and the values of the conventional pressure, initial critical pressure and ultimate pressure are presented in Table 2.

Fig. 2 – Load-settlement curves for cohesive soils with $I_P > 20\%$.

In the first stage the soil behaviour is linear elastic until a limit pressure which corresponds to appearance of the plastic points in the ground. In the second stage the soil has an elastic-plastic behaviour and the settlement rate is higher than the one from the first stage.

Table 2The Values of the Allowable, Initial Critical, Conventional and Ultimate Pressures for
Cohesive Soils With $I_P > 20\%$

Sampla		р	all			<i>111</i> D	n	$p_{ m ul.}$			
Sample	2 cm	4 cm	6 cm	8 cm	$p_{\rm cr.in.}$	$m_1 p_{\text{cr.in.}}$	$p_{ m conv.}$	No App.	DA1C1	DA1C2	
S00	75	108	130	147	117	129	185	181	134	146	
S01	100	144	174	200	147	206	225	251	186	193	
S02	130	186	226	259	173	242	265	315	234	234	
S03	98	140	168	192	143	157	225	237	176	184	
S04	132	187	226	259	175	245	260	318	236	237	
S05	163	232	282	325	204	286	295	395	293	286	
S06	127	176	214	245	165	182	265	291	216	220	
S07	167	237	288	332	210	294	295	409	303	295	
S08	198	187	350	405	243	340	320	505	374	354	
S09	157	219	263	302	191	210	320	350	259	260	
S10	202	288	350	403	245	343	350	495	367	351	
S11	227	327	396	458	265	371	380	553	410	387	
S12	183	253	306	350	210	231	395	397	294	291	
S13	234	333	407	469	277	388	430	580	438	405	
S14	275	397	485	559	324	356	460	704	521	484	
S15	334	482	588	678	386	540	565	873	647	589	

All values of the allowable pressure corresponding to a settlement of 6 cm are higher than the minimum values of the ultimate pressure. The values of the initial critical pressures are lower than the values of the allowable pressure corresponding to a settlement of 6 cm but higher than those corresponding to a settlement of 2 cm.

3.2. The Allowable Pressures for Cohesive Soils with $10\% < I_p \le 20\%$

The pressure-settlement curves, for cohesive soils with $10\% < I_p \le 20\%$, are obtained using the Plaxis2D software (Fig. 3). In this case, the values of the pressures corresponding to settlements of 2, 4, 6 and 8 cm and the values of the conventional pressure, initial critical pressure and ultimate pressure are presented in Table 3.

Fig. 3 – Load-settlement curves for cohesive soils with $10\% < I_P \le 20\%$.

In this case, the ratio between the values of the allowable pressure (corresponding to a settlement of 6 cm) to the values of the initial critical pressure takes values from 1.11 for S19 ($\phi = 16^\circ$; c = 21 kPa; E = 11,000 kPa) to 1.63 for S32 ($\phi = 22^\circ$; c = 30 kPa; E = 34,000 kPa). These ratios are similar with the values of the coefficient of working conditions (m_1) which takes the value of 1.1 for $I_C < 0.50$ and the value of 1.4 for $I_C > 0.50$. For soils with E < 8,000 (S16, S17 and S18) the ratio is lower than 1.0.

The Values of the Allowable, Initial Critical, Conventional and Pressures for Cohesive Soils with $10\% < I_P \leq 20$									Iltimate (6	Critical	
C 1 .	$p_{\rm all}$				n			$p_{\rm ul.}$			
Sample	2 cm	4 cm	6 cm	8 cm	$p_{ m cr.in.}$	$m_1 p_{\text{cr.in.}}$	$p_{\rm conv.}$	No App.	DA1C1	DA1C2	
S16	16	32	48	61	95	104	170	152	113	119	
S17	37	61	77	93	108	119	200	183	136	140	
S18	65	97	123	148	130	182	220	244	181	178	
S19	90	134	170	203	154	215	245	313	232	220	
S20	70	105	132	157	140	154	225	258	191	190	
S21	98	146	185	220	171	239	245	353	261	247	
S22	128	192	241	287	204	285	265	456	344	308	
S23	91	134	170	203	156	172	265	307	227	219	
S24	117	172	219	262	182	255	270	388	287	267	
S25	142	209	267	319	206	288	280	475	352	316	
S26	131	190	239	282	182	200	270	374	277	261	
S27	155	226	284	339	210	294	290	468	347	316	
S28	183	271	341	410	242	339	305	585	433	381	
S29	202	292	366	436	245	343	305	571	423	379	
S 30	227	337	423	504	281	393	325	709	525	453	
S31	247	359	453	539	277	388	320	674	499	433	
S32	289	425	539	640	335	469	350	884	655	549	

Table 3

3.3. The Allowable Pressures for Cohesive Soils with $I_P \leq 10\%$

The pressure-settlement curves, for cohesive soils with $I_P \leq 10\%$, are obtained using the Plaxis2D software (Fig. 4). In this case, the values of the pressures corresponding to settlements of 2, 4, 6 and 8 cm and the values of the conventional pressure, initial critical pressure and ultimate pressure are presented in Table 4.

Table 4 The Values of the Allowable, Initial Critical, Conventional and Ultimate Critical Pressures for Cohesive Soils with $I_P \leq 10\%$

Samula		I	\mathcal{P}_{all}					$p_{\rm ul}$			
Sample	2 cm	4 cm	6 cm	8 cm	$p_{ m cr.in.}$	$m_{\rm l} p_{\rm cr.in.}$	$p_{ m conv.}$	No App.	DA1C1	DA1C2	
S33	50	84	116	145	113	124	270	223	165	157	
S34	82	134	180	226	149	164	280	340	252	225	
S35	102	164	221	275	172	241	305	434	321	276	
S36	128	207	277	343	182	200	290	460	341	292	
S37	152	243	327	407	210	294	325	584	433	357	
S38	160	254	339	419	209	230	305	556	412	346	

Fig. 4 – Load-settlement curves for cohesive soils with $I_P \leq 10\%$.

In this case, the ratio between the values of the allowable pressure (corresponding to a settlement of 6 cm) to the values of the initial critical pressure takes values from 1.03 for S33 ($\phi = 17^{\circ}$; c=2kPa; E=10000 kPa) to 1.62 for S38 ($\phi = 23^{\circ}$; c = 8 kPa; E = 26,000 kPa). These ratios are similar with the values of the coefficient of working conditions (m_l) which takes the value of 1.1 for $I_C = 0.25 - 0.50$ and the value of 1.6 for $I_C = 0.50 - 1.00$.

3.4. The Allowable Pressures For Cohesionless Soils

The pressure-settlement curves, for cohesionless soils, are obtained using the Plaxis2D software (Fig. 5). In this case, the values of the pressures corresponding to settlements of 2, 4, 6 and 8 cm and the values of the conventional pressure, initial critical pressure and ultimate pressure are presented in Table 5.

Fig. 5 - Load-settlement curves for cohesionless soils.

In this case, the ratio between the values of the allowable pressure (corresponding to a settlement of 6 cm) to the values of the initial critical pressure takes values from 1.15 for S40 ($\phi = 22^{\circ}$; c = 0 kPa; E = 110,000 kPa) to 2.04 for S53 ($\phi = 36^{\circ}$; c = 0 kPa; E = 40,000 kPa). These ratios are similar with the values of the coefficient of working conditions (m_i) which takes the value of 1.3 for silty sands and the value of 2.0 for sands.

Table 5

The Values of the Allowable, Initial Critical, Conventional and Ultimate Pressures for Cohesionless Soils

Sampla		p	all		n	<i>m</i> p	n	$p_{ m ul.}$				
Sample	$2 \mathrm{cm}$	4 cm	6 cm	8 cm	$p_{\rm cr.in.}$	$m_1 p_{\text{cr.in.}}$	$p_{\rm conv.}$	No App.	DA1C1	DA1C2		
S40	52	92	129	165	112	168-202	150-300	276	204	177		
S41	82	142	201	256	135	203-244	150-300	369	256	226		
S42	138	238	337	429	184	277-332	200-350	624	408	351		
S43	148	260	365	463	222	333-399	200-350	843	521	454		
S44	77	131	180	229	119	215-227	250-350	309	229	194		
S45	114	195	273	348	163	293-310	250-350	522	362	300		
S46	160	277	395	503	209	377-398	350-500	796	521	429		
S47	170	298	415	534	237	426-449	350-500	955	590	503		
S48	147	259	360	461	210	420	500	849	590	447		
S49	184	323	456	576	223	447	600	902	589	475		
S50	217	392	549	712	269	539	600	1,233	761	619		
S51	173	303	433	553	240	479	600	1,096	761	551		
S52	218	391	548	698	254	509	700	1,164	761	585		
S53	258	548	670	873	329	658	700	1,840	1,136	861		

The values of the allowable pressures corresponding to the settlement of 6 cm, for different types of soils are presented in the Table 6. In the Table 7 are presented the values of the coefficient proposed to obtain the values of the allowable pressure for other values of the limiting settlement (s_{all}).

-														
	Col	nension	nless s	oils	Cohesive soils with $S \ge 0.8$									
e	vel ids	s			$I_P <$	10%	I_P	$I_P > 20\%$						
utio,	gra san	anc	spu	spu				Ic	2					
d ra	'ith rse	m	sar	sar	00	.75	00	.75	.50	00	.75	50		
Voi	ls w coa	diu	ine	ilty	- 1	0 -	- 1	0 -	0 -		0 -	0 -		
ŕ	and	Me	ц	S	0.75).25	0.75).50).25	0.75).50).25		
	S.				•	•	•	0)	•	•	•		
0.45	670	550	415	365	410	340	540	450	-	_	-	-		
0.55	545	455	395	335	325	275	420	365	-	585	-	-		
0.65	430	360	270	200	220	180	340	285	240	485	405	305		
0.75	-	-	180	130	-	115	265	220	170	400	350	260		
0.85	_	-	_	_	_	_	240	185	130	350	285	215		
0.95	_	-	_	_	_	_	170	120	75	280	225	165		
1.05	_	_	_	_	_	_	_	-	50	225	170	130		

Table 6Guidance Values of the Allowable Pressure $p_{su(6)}(kPa)$

 Table 7

 The Coefficient to Obtain the Allowable Pressure Considering the Limiting Settlement of 2 and 4 cm, [kPa]

Type of soil	$s_{\rm all} = 4 \rm cm$	$s_{\rm all} = 2 {\rm cm}$								
Cohesionless	1.39	2.47								
Cohesive with $I_P < 10\%$	1.35	2.10								
Cohesive with $10 < I_P < 20\%$	1.26	1.86								
Cohesive with $I_P > 10\%$	1.21	1.73								

4. Conclusions

The finite element method was used for establishing the load-settlement curves and the allowable pressure for different types of soils acted by strip rigid foundations. The behaviour of the soil was modelled with the Mohr-Coulomb linear elastic-perfect plastic constitutive model implemented in the Plaxis2D software. The values of the allowable pressure corresponding to a settlement of 6 cm ($p_{all(6)}$) are lower than the values of the conventional pressures (p_{conv}), plastic pressures (p_{pl}) and the ultimate pressure (p_{ul}) obtained using the specifications from the Romanian technical regulations.

It is to be noted that the results presented in this study correspond to a rigid strip foundation with the width of 1.0 m founded at a foundation depth of 2.0 m. It is intended that these results (Table 6 and Table 7) to be used for structures and earthworks of low geotechnical complexity and risk.

REFERENCES

- Bejan F., *Presiunea critică inițială pentru fundații continue perfect rigide*, Workshop "Tendințe și cerințe de interdisciplinaritate în cercetare", Iași, 25 ianuarie 2013.
- Bejan F., Soil-Foundation Interaction in the Computation of the Bearing Capacity of the Foundation Soil (in Romanian), Ph. D. Diss., "Gheorghe Asachi" Technical University of Iaşi, 2013.
- Stanciu A., Lungu I., Bejan F., Computation of the Initial Critical Pressure Based on the Hardening Soil Criterion for the Foundation Soil. Proceedings of the International Conference DEDUCON – Sustainable development in civil engineering, Iaşi, 2011.
- Stanciu A., Lungu I., *Fundații 1 Fizica și mecanica pământurilor*, Edit. Tehnică, București, 2006.
- * * Eurocode 7 part 1, General Rules CEN/TC 250/SC7. European Committee for Standardization, Brussels, EN 1997-1, 2004.
- * * Normativ privind proiectarea fundațiilor de suprafață, NP 112:2014.
- * * Normativ privind determinarea valorilor caracteristice şi de calcul ale parametrilor geotehnici, NP 122:2010.

PRESIUNI ADMISIBILE PENTRU FUNDAȚII CONTINUE RIGIDE

(Rezumat)

Proiectarea fundațiilor este realizată considerând atât rezistența cât și deformabilitatea pământului, în condițiile de încărcare preconizate. În cazul clădirilor de importanță normală, fundate pe terenuri bune de fundare proiectare poate fi realizată utilizând metode de proiectare prescriptive – compararea presiunilor efective cu presiunile admisibile. Valorile presiunilor admisibile (presiunilor convenționale), indicate în reglementările tehnice din România sunt stabilite pe baze empirice. În acest studiu sunt propuse noi valori ale presiunilor admisibile pentru fundații continue rigide, folosind o abordare numerică. Acest studiu arată că valorile presiunilor admisibile corespunzătoare unei tasări de 6 cm sunt mai mici decât valorile presiunile convenționale, plastice și ultime obținute folosind reglementările tehnice din România.