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Abstract. The approach towards solving problems related to the 

construction environment is currently facilitated by the existence of advanced 
computers and programs developed specifically for different engineering 
branches. Finite element based programs are powerful tools capable of solving 
even the most complex engineering structures. In this context, the user dictates 
the quality of the results obtained from the numerical analysis. For this reason, 
an essential aspect for obtaining representative results for the studied problems is 
the user’s understanding of the mathematical basis and the stages involved in the 
numerical analysis process. Given that the mathematical basis is represented by 
the established laws of continuum mechanics, this article aims to present the 
process of determining the state of stress and strains of a continuous body in an 
easily understandable way, providing in the end an example of calculation in the 
field of geotechnical engineering. Understanding these basic principles is 
fundamental in the numerical modelling of engineering problems. 
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1. Introduction 
 
With the development of advanced computer technology, considerable 

progress has been made in all areas of engineering and, in particular, in the civil 
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engineering branches. Analytical solutions are still used for many of the 
problems encountered in this field. However, they are of limited applicability in 
case of a high level of structural complexity or if additional information is 
required for the problem at hand. Programs based on advanced numerical 
methods, such as the finite element method, eliminate many of the limitations of 
analytical methods. These programs are generally used by the generation of 
young engineers, and, because they are relatively easy to use, there is a 
tendency to neglect the mathematical basis and stages involved in the numerical 
analysis process. Understanding these basic principles is fundamental in 
modeling civil engineering structures and in the process of validating the results 
(Wood, 2004).  

This article aims to guide the reader through all the steps required in 
order to determine the state of stress and strain at a point in a continuum body. 
The state of stress is detailed in the first part of the article, beginning with the 
definition of stress, building the stress tensor and demonstrating the symmetry 
of the stress tensor. The state of strain is discussed next, with the definition of 
normal and shear strain and building the strain tensor. Finally, a practical 
example of an analytical and numerical determination of the stress state is 
discussed for a simple problem in geotechnical engineering. 

 
2. State of Stress 

 
Determining the state of stress is necessary in order to assess the manner 

in which a body behaves under the action of forces. This will be further illustrated 
for an arbitrary body in equilibrium under an arbitrary system of forces (Fig. 1). 

 

 
 

Fig. 1 – Body in equilibrium under an arbitrary system of forces (Mazilu, 1977). 
 

2.1. Definition of Stress 
 
Under the action of external forces, internal forces will develop between 

different parts of the body. In order to study these forces at any point O, the 
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body will be sectioned over an area S, dividing it into two parts, A and B. 
Analysing only one of these parts (for example part A) it can be said that it is in 
equilibrium under the action of external and internal forces distributed on the 
surface S, the latter representing the action of the material of part B on the 
material of part A. It can be assumed that these forces are distributed over the 
surface S in the same way in which wind pressure is distributed over the surface 
on which it acts. The magnitude of these forces is defined by their intensity, 
meaning the amount of force per unit area. This intensity if called “stress” 
(Timoshenko & Goodier, 1951).  

Stresses are not generally distributed over the surface S in a uniform 
manner. For this reason, in order to obtain the magnitude of the stress, a small 
area, ΔA, defined around point O will be extracted from the surface S (Fig. 2). 
The forces acting on the ΔA area can be reduced to a resultant noted ΔP, 
representing the action of the material of part B on part A for this given area. 
The limiting value of the ratio ΔP/ΔA gives us the stress, p, acting at point O of 
the surface S (Timoshenko & Goodier, 1951): 

0

lim .
A

P p
A 





                                              (1) 

 

 
 

Fig. 2 – Stress development in point O of surface S (Mazilu, 1977). 
 

Being a physical quantity defined by magnitude and direction, stress is 
regarded as a vector and not a scalar. As such, the total stress, p, can be broken 
down into the specific components of a vector: 

a) a normal component, σ, acting along the normal direction to the 
surface on which p  acts; 

b) two tangential components, τ, perpendicular to each other, acting 
parallel to the surface on which p  acts. 

In a Cartesian coordinate system, of axes x( i


), y( j


) and z( k


), the total 
stress p  can be decomposed as presented in Fig. 3.  
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Fig. 3 – Stress components in a x-y-z Cartesian coordinate system (Mazilu, 1977). 

 
The stress vector has the following expression (Mazilu, 1977): 

 

,x xy xzp i j k    
                                                (2) 

 

where: kji


,,  are the unit vectors of the x, y and z axes.   
Regarding the sign convention it is generally considered that the normal 

stress component, σ, is positive when it produces tension in the body on which it 
acts (Timoshenko & Goodier, 1951; Mazilu, 1977). This rule however doesn’t 
apply for all engineering branches. For example, in geotechnical engineering the 
normal stress components are considered positive when they produce 
compression (Desai & Christian, 1977). As for the tangential stresses, the 
following rule applies regardless of the engineering field: if the normal 
component, σ, acts in the negative direction of its corresponding axis then the 
tangential stresses, τ, will be positive if they also act in the negative direction of 
their  corresponding  axes (Timoshenko & Goodier, 1951; Mazilu, 1977). In 
Fig. 3 all of the stress components are represented in their positive direction.   
 

2.2. Stress Tensor 
 
So far, it can be concluded that through a point O an infinite number of 

planes can be chosen and each one of them has a total stress p  that corresponds 
to it, with three components: a σ component and two τ components (Mazilu, 
1977; Das, 2008).  

In order to find the stress state in point O (which means to know the 
stresses that act on any plane that goes through point O), it is necessary and 
sufficient to know the stresses acting on three orthogonal planes that go through 
point O (Fig. 4) (Mazilu, 1977).  
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Fig. 4 – Stress components in three dimensions (Mazilu, 1977). 
 

All nine components illustrated in Fig. 4 are positive according to the 
sign convention which was previously discussed and they are represented in the 
following form (Stanciu & Lungu, 2006; Murthy, 2007; Yu, 2006): 

 

 


















zzyzx

yzyyx

xzxyx

T





                                              (3) 

 

[ T ] is called the stress tensor in point O, in the x-y-z Cartesian 
coordinate system. Each of the columns of the tensor represent the total stress 
components for the planes defined by the unit vectors kji


,,  (Mazilu, 1977). 

It can be concluded that the stress state in a random point of a body is 
defined by a system of vectors, leading to the notion of second-order tensor with 
nine components (Mazilu, 1977; Yu 2006).  

One of the fundamental problems of continuum mechanics lies in 
determining the stress tensor for every point of the body, meaning determining 
the stress field for that specific body (Mazilu, 1977; Yu 2006). 

 
2.3. Symmetry of the Stress Tensor 

 
The symmetry of the stress tensor will be demonstrated using the 

principle of conservation of momentum for an elementary unit of very small 
dimensions dx, dy and dz (Fig. 5) that corresponds to point O of the body.  

In order for this elementary unit to be in equilibrium, the sum of all 
moments of the forces acting in point O needs to be equal to zero:  
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  0)(OM .                                              (4) 
 
 

 
 

Fig. 5 – Elementary unit around point O (Mazilu, 1977; Das, 2008). 
 
To illustrate this principle, the equation of equilibrium will be written 

for the xz plane. As can be observed, the normal stresses, σ, do not generate 
momentum and therefore will not intervene in the equation. The stress variation 
from one side of the elementary unit to the opposite side will also be neglected. 
Normally, if τxz acted on the left side, the right side would have the following 
stress (Mazilu, 1977): 
 

 dx
x

xz
xz 





                                               (5) 

 

 These variations can be neglected in the equilibrium equation as they 
are quantities of higher order which vanish in the limit (Mazilu, 1977).  

Thus, the equilibrium equation will have the form shown in Fig. 6.  
 

 
 

Fig. 6 – The equation of equilibrium. 
 
The equilibrium equation requires that τxz = τzx. Similarly, it can be 

demonstrated that τxy = τyx and τyz = τzy (Yu, 2006). 
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Thus, the number of stress components reduces to six: three normal 
stresses and three tangential stresses (Yu, 2006).  

 
3. State of Strain 

 
An elementary unit belonging to a body will suffer displacements and 

deformations when that body is solicited by an unbalanced system of forces 
(Fig. 7).  

 

 
 

Fig. 7 – Displacement and deformation of an elementary unit of a body 
(Das, 2008; Budhu, 2000). 

 
The displacement components are noted u, v and w and they correspond 

to the x, y and z axes. For simplification, the strain components will be 
illustrated only for the xy plane (Fig. 8).  
 

 
 

Fig. 8 – Strain components in the xy plane (Das, 2008; Hosford, 2010). 
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3.1. Normal Strain 

 
Normal strain, ε, is the ratio given in the following equation, where l0 is 

the initial length and l1 is the final length, after deformation (Fig. 9): 
 

00

1

l
l

l
ll 



  .                                             (6) 

 

 
 

Fig. 9 – Definition of normal strain, (Hosford, 2010). 
 

If ε > 0 → specific elongation, if ε < 0 → shortening/specific shrinkage. 
For an elementary unit of dimensions dx, dy and dz (Fig. 7), the normal 

strains εx, εy and εz are determined based on the equations given below (Yu, 
2006; Hosford, 2010).  

 

x
u

dx

dx
x
u

xx 

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  ,                                              (7) 
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z
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z
w

zz 





  .                                              (9) 

 
3.2. Shear Strain 

 
The shear strain is represented by the angular changes that result due to 

deformations (Fig. 10). In the small strain hypothesis, the angle γ is 
approximately equal to its tangent:  

 
'tg .bb

ab
                                                   (10) 
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Fig. 10 – Definition of shear strain (Budhu, 2000). 
 
 The shear strain in the xy plane for the exemplified elementary unit 

from Fig. 7 is represented by the change of the angle formed between AB and 
AC  (Fig. 8), and it is noted γxy: 

 

 xy                                               (11) 
 

The parameters α and β are exemplified in the following equations 
(Das, 2008):   
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 Similarly, it can be demonstrated that γyz = γzy and γxz = γzx.   

The table of the strain components of an elementary unit located in the 
vicinity of a point belonging to a continuous body, is called strain tensor and, 
similar to the stress tensor, it is symmetrical with regard to the main diagonal 
(Stanciu & Lungu, 2006; Murthy, 2007; Yu, 2006):  
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4. Practical Example for the Determination of the Stress Tensor 

 
The aim is to determine the stress state and build the stress tensors that 

correspond to two points belonging to a loaded soil mass.  
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The analyzed situation is that of a continuous foundation that transmits 
a uniformly distributed load to the ground.   

The solution is given based on an analytical and a numerical 
calculation. The numerical analysis was made using the finite element modeling 
software Plaxis 2-D.  

Because the problem is analyzed from the plane point of view, the stress 
state is given by two normal components, σx and σz, and by two equal tangential 
components, τxz = τzx. Consequently, the stress tensor will be composed by a 
matrix with four elements.  

 
4.1. Problem Description 

 
The continuous foundation has a width of 2.00 m and transmits to the 

ground a uniform load of 100 kPa. The problem is represented schematically in 
Fig. 11 illustrating the position of the two points in which the state of stress will 
be determined.  

 

 
 

Fig. 11 – Position of the two points in which the stress state is calculated.  
 

4.2. Analytical Solution 
 

The stress state in a point of a soil mass is given by the stresses 
generated by the external forces, added to those generated by the geological 
pressure. All of these stresses are represented for the analyzed situation in Fig. 
12. 

The analytical solution for the determination of the stress state in the 
soil mass for a uniformly distributed continuous load, of finite width and 
infinite length, is given by the relations developed by Carothers (1920) for 
normal stresses (Eqs. 15 and 16) and for tangential stresses (Eq. 17) (Aysen, 
2005; Craig, 2004; Das, 2008). The parameters involved in the calculation are 
shown in Fig. 13.   
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Fig. 12 – Plane state of stress in a point in the soil mass. 

 
 

Fig. 13 – Parameters involved in the stress state calculation (Aysen, 2005; 
Craig, 2004; Das, 2008). 

 

 )2cos(sin 


 
q

x
,                                 (15) 

 

 )2cos(sin 


 
q

z
,                                 (16) 

 )2cos(sin 


 
q

xz
.                                    (17) 

 
The values of the angles α and β have the following expressions (Aysen, 

2005):  
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The soil action generates vertical and horizontal tensions, which can be 
determined by the equations shown below.   
 

zgz   ,                                                      (20) 
 

0Kzgx   ,                                                   (21) 
 

where: K0 is the at rest earth pressure coefficient, which can be obtained by the 
equation developed by Jaky (1944), (Craig, 2004; Murthy, 2007); 
 

sin10 K                                               (22) 
 

where: φ is the internal friction angle of soil. 
   

4.3. Numerical Solution 
 

In order to validate the analytical results, a numerical model of the 
proposed problem was made using the finite element modeling software, Plaxis 
2D. 

The model was made in plane strain. Using the advantage of model 
symmetry, only half of the problem was introduced and analyzed into the 
program (Fig. 14) (Plaxis 2-D – Tutorial Manual, 2008). 

 

 
 

Fig. 14 – Numerical model in the finite element program, Plaxis 2-D. 

The soil was modeled using the Mohr-Coulomb model with a value of 
Young’s modulus of E = 5,000 [kN/m2] and Poisson’s ratio of ν = 0.30 [-]. The 
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soil strength was taken into account by a value of the friction angle of φ = 15 [°] 
and a cohesion value of c = 30 [kN/m2]. The volumetric weight of the soil was 
introduced with the value of γ = 18 [kN/m3]. 

 
4.4. Results and Discussions 

 
The results of the analytical and numerical calculations are presented in 

Fig. 15, and the stress tensors are shown in Fig. 16. 
 

 
 

Fig. 15 – Results from analytical and numerical calculation for points A and B, [kPa]. 

 

 
 

Fig. 16 – Stress tensors based on the determined values, [kPa]. 

The negligible differences observed between the analytical and 
numerical  results  in  the  case of the vertical stress (σz) and tangential stresses 
(τxz = τzx) can be attributed to the level of discretization of the numerical model 
(Teodoru & Muşat, 2009) and to the fact that the numerical analysis gives an 
approximate solution and not an exact one. The differences obtained for the 
horizontal stress (σx) are due to the fact the analytical relations given by the eqs. 
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(15), (16) and (17) are independent of the material parameters. In the numerical 
calculation however, the horizontal stress (σx) is influenced by the value of 
Poisson’s ratio (ν).  
 

5. Conclusions 
 

This article has presented the theoretical basis behind the determination 
of the state of stress and strain in a point belonging to a continuous medium. The 
theory lies at the foundation of numerous numerical modelling programs used in 
various domains of construction engineering. Thus, understanding it is 
fundamental in the modelling process and for validation of the obtained results.   

In the analysed practical example, the stress state in two pints (A and B) 
of a loaded soil mass has been determined, based on analytical and numerical 
calculations. 

It has been observed that the differences between the analytical and 
numerical solutions are negligible for the vertical and tangential stresses. The 
differences found for the horizontal stress (σx) are attributed to the value of 
Poisson’s ratio (ν) which in the case of the considered analytical equations is not 
taken into account. At the same time, the stresses are independent of the value of 
Young’s modulus (E). 
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ANALIZA STĂRII DE TENSIUNI ŞI DEFORMAŢII ÎN MECANICA MEDIULUI 
CONTINUU CU APLICABILITATE ÎN MECANICA PĂMÂNTURILOR 

 
(Rezumat) 

 
Abordarea problemelor din mediul construcţiilor este facilitată în prezent de 

existenţa calculatoarelor şi a programelor specializate pe diferite ramuri ale ingineriei. 
Programele bazate pe metoda elementului finit reprezintă instrumente puternice 
capabile să rezolve până şi cele mai complexe structuri inginereşti. În acest context 
utilizatorul este cel care dictează calitatea rezultatelor obţinute în urma analizelor 
numerice. Din acest motiv, un aspect esenţial pentru obţinerea unor rezultate 
reprezentative pentru problemele studiate îl reprezintă înţelegerea de către utilizator a 
bazei matematice şi a etapelor de rezolvare parcurse în cadrul programelor de calcul. 
Având în vedere că această bază matematică este reprezentată de legile consacrate ale 
mecanicii mediului continuu, articolul îşi propune să prezinte într-un mod uşor de 
înţeles procesul de determinare a stării de tensiuni şi deformaţii a unui corp continuu, 
oferind în final un exemplu de calcul. Înţelegerea acestor principii de bază este 
fundamentală în procesul de modelare numerică a problemelor inginereşti. 

 



 


