BULETINUL INSTITUTULUI POLITEHNIC DIN TASI
Tomul LIT (LVI), Fasc. 3-4, 2006

CONSTRUCTIL. ARHITECTURA

dve

ﬂ""':‘ )

"~

A FINITE ELEMENT STUDY OF THE
BENDING BEHAVIOR OF BEAMS RESTING
ON TWO-PARAMETER ELASTIC FOUNDATION

BY
IANCU B. TEODORU, V. MUSAT and *M. VRABIE

Although the Winkler’s model is a poor representation of the many practical subgrade
or subbase materials, it is widely used in soil-structure problems for almost one and a half
century. The foundations represented by Winkler model can not sustain shear stresses, and
hence discontinuity of adjacent spring displacements can occur. This is the prime short-
coming of this foundation model which in practical applications may result in significant
inaccuracies in the evaluated structural response. In order to overcome these problem many
researchers have been proposed various mechanical foundation models considering interac-
tion with the surroundings. Among them we shall mention the class of two-parameter
foundations - named like this because they have the second parameter which introduces
interactions between adjacent springs, in addition to the first parameter from the ordinary
Winkler's model. This class of models includes Filonenko-Borodich, Pasternak, generalized,
and Vlasov foundations. Mathematically, the equations to describe the reaction of the two-
parameter foundations arc equilibrium ones, and the only difference is the definition of
the parameters. For the convenience of discussion, the Pasternak foundation is adopted in
present paper.

In order to analyse the bending behavior of a Euler-Bernoulli beam resting on two-
parameter elastic foundation a (displacement) Finite Element (FE) formulation, based on
the cubic displacement function of the governing differential equation, is introduced. The
resulting effects of shear stiffness of the Pasternak model on the mechanical quantities are
discussed in comparison with those of the Winkler’s model. Some numerical case studies
illustrate the accuracy of the formulation and the importance of the soil shearing effect in
the vertical direction, associated with continuous elastic foundation.

1. Introduction

The concept of beams and slabs resting on elastic foundations has been exten-
sively used by geotechnical, pavement and railroad engineers for foundation design
and analysis. The analysis of structures resting on elastic foundations is usually
based on a relatively simple model of the foundation’s response to applied loads.

Generally, the analysis of bending of beams resting on an elastic foundation is
developed on the assumption that the reaction forces of the foundation are propor-
tional, at every point, to the deflection of the beam at that point. The vertical
deformation characteristics of the foundation are defined by means of continuous,
closely spaced linear sp-ings. The constant of proportionality of these springs is
known as the modulus o subgrade reaction, ko. This simple representation of elastic
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foundation was introduced by Winkler in 1867. The Winkler’s model (one parame-
ter model), which has been originally developed for the analysis of railroad tracks, is
very simple but does not accurately represent the characteristics of many practical
foundations. One of the most important deficiencies of the Winkler’s model is that
a displacement discontinuity appears between the loaded and the unloaded part of
the foundation surface. In reality, the soil surface does not show any discontinuity

(Fig.1).

Fig. 1.- Deflections of elastic foundations under uniform
pressure: a — Winkler’s foundation; b — practical soil foundation.

In order to eliminate the deficiency of Winkler's model, improved theories have
been introduced on refinement of Winkler's model, by visualizing various types
of interconnections such as shear layers and beams along the Winkler springs [5]
(Filonenko-Borodich (1940), Hetenyi (1946), Pasternak (1954), Vlasov and Leontiev
(1960), Kerr (1964)). These theories have been attempted to find an applicable and
simple model of representation of foundation medium. The two-parameter Paster-
nak’s model [3] is one of them.

Two-parameter foundation models are more accurate than the one-parameter
(e.g. Winkler) foundation model. As a special case if the second parameter is ne-
glected, the mechanical modeling of the foundation using the Pasternak’s formulation
converges to the Winkler’s formulation.

The two-parameter Pasternak foundation assumes the existence of shear inter-
action between the spring elements. This may be accomplished by connecting the
ends of the springs with a beam consisting of incompressible vertical elements which
deform only by transverse shear (Fig.2). The stiffness of the springs and the shear
rigidity of this beam are the two parameters of the foundation.
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Fig. 2.- Pasternak’s elastic foundation.
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Of all available elastic foundation models, the Pasternak’s one is the most natural
extension of the Winkler’s model for homogeneous foundation soil, when the second
parameter, shear modulus, G, is considered in the analysis [5].

2. Basic Assumptions and Analytical Formulation

In what follows we consider straight beams with constant section loaded by forces
placed in a principal plane of inertia and continuously supported on a deformable
elastic foundation. Beam material is linearly elastic, homogeneous, isotropic and
continuous. The foundation medium is assumed to be linear, homogeneous and
isotropic.

- The considered beam, supported by a Pasternak foundation having spring and
shear stiffnesses, ko and ko, respectively, is represented in Fig.3. The reactive
pressure of the two-parameter foundation subjected to a distributed load, g(z), is
described by (5]

d*w(zx)
dz?

d*w(z)

(1) plz) = koBu(z) — kogB——;

= kw(z) — kg

]

where: B is the width of the beam cross section; w — deflection of the centroidal line
of the beam.
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Fig. 3.— Beam resting on Pasternak’s elastic foundation

The governing equations of the centroidal line of the deformed beam resting on
elastic foundation is 7]

d*w

(2) EISY = g(z) - p(2),
dz

or substituting p(z) from (1)

: d"l dzu'( x)

where E is the modulus of elasticity of the constitutive material of the beam:
I - the moment of inertia for the cross section of the beam.
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3. Finite Elements Formulation

The assumptions and restrictions underlying the development are the same as
those of elementary beam theory with the addition of the following hipothesis:

1. the element is of length / and has two nodes, one at each end;

2. the element is connected to other elements only at the nodes:

3. element loading occurs only at the nodes.

The beam is divided into m unidimensional finite elements (FE) and to each i
node of their interconnection, two degrees of freedom are allowed: D;,, — the vertical
displacement and Djy — the slope of cross section. The { D} vector of positive nodal
displacements is build just like in the system of Oz general axes from Fig. 4. In the
same way the vector of external nodal actions is build namely

{4} {D} = {Dlw Dlﬂ---DEw Dr'ﬁ'---Dnu;DuE}Ts {P} = {le Pl{;---Pl'w Px'l?--‘inPﬂﬂ}T-

zZw
DIW
D,
2 3 I% n-1 n x

1
(o R P ¥ ' 7Y

Fig. 4 FE discretization of the beam domain.

To each one dimensional element of beam type, two degrees of fredom are allowed
at both extremities: deflection, w; and slope, 6; and w,, 0, respectively, positives
in the system of local axes from Fig. 5.
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Fig. 5.- The FE study.

With help of these displacements, the {d,} vector of elemental nodal displace-
ments and, similarly. the {S.} vector of elemental nodal forces, with respect to the
system of local axes, are defined

(5) {do} = {w1 6 wy 62}, {S.}={Q1 My @, M}

We must note that Q; and @, from (5) are not simply the transverse shear forces
in the beam; they includes also the shear resistance associated with modulus, kg,
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of the two-parameter foundation. Forces Q;. (i= 1, 2), are generalized shear forces
defined by

(6) Qi=Vi+V,

where V; = Eld*w(x)/dz® is the usual shear contribution from elementary beam
theory; V.* = —kg dw(x)/dx - the shear contribution from Pasternak’s foundation
(negative sign arises because a positive slope requires opposite shear forces in the
foundation).

Considering the four boundary conditions and the one-dimensional nature of the
problem in terms of the independent variable, we assume the displacement function
in the form

(7) we(z) = ao + ayx + (12.132 + asz®.

The choice of a cubic function to describe the displacement is not arbitrary. With
the specification of four boundary conditions, we can determine no more than four
constants in the assumed displacement function. The second derivative of the as-
sumed displacement function, w.(z), is linear; hence, the bending moment varies
linearly, at most, along the length of the element. This is in accord with the assump-
tion that loads are applied only at the element nodes.

Applying the boundary conditions

we(e = 21) = wi, w(z = 22) = wy,

(8) dw,

dw,

successively, yields

(we(z = 0) = wy = ag,

we(z = 1) = wy = ag + ayl + ayl? + aal?,

(9) § dw
2 =0, = ay,
o
dw,._, 2
e = 62 = ﬂ]! + 2(12! + 3(13!-‘
. dz =1

Solving the equations system (9) the coefficients of displacement function in terms
of the nodal variables are obtained. which are substitute in (7) to determine the
expression of the deflection i.e.

(10) we(x) = Ny(a)wy 4+ Na(2)0; + Na(a)w, + Na(z)0, = [N {d.},
or in reduced variable (€ = a/[)

(11) we(€) = N1 (E)wy + Na(€)0) + Na(€)ws + Na(£)0; = [N;]"{d.}.
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where Ni(z),(: = 1,...,4), are the interpolation functions (of Hermite type) that
describe the distribution of displacement in terms of nodal values in the nodal dis-
placement vector {d.}

2 3 )
Nl(:t):Nl(E):l 332 _|_2[ _1_3§2+2£3,
.7!','2 3
Noe) = Ny() = 3= 2 + T = I(E - 26" + €°),
(12) $ B
Na(z) = N3(€) = 3:; 2£—3 = 3¢ - 26°,

Ny(z) = Na(€) = "T 5—2 = —I(€* - &).

\

As the polynomial (10) represents an approximate solution of the governing equa-
tions (3), it result the residuum (error or discrepancy)

d*w,(z)

2
(13) &(a) = BI—=— — ko g ;”;Ex) + kwe(z) — q(z) # 0.

The minimizing of this residunm means to the annulment of Galerkin balanced
functional, where the weight is considered for each of the four functions, N;(z), (1 =1,
2,....,4)

i

= /N,-(:c)s(m)da: =

0
! 4
- GfN,(:.c) [E[ d Z”;Ex) s :" g + kwe(z) — q(;,;)] dz =
(14) I |
4 i
. E;fN,-( 34 j;&‘-) dz — kGfN,-(. r) d‘”“(“”] da +f )kw,(z) dz—

—fN,—(x)q(a:)dx =0, (i=1,..,4).

o

In first integral from (14). utilizing the parts procedure twice and taking into
account the differential relations (in FEM sign convention) from elementary beam
theory

d*w M(z) d’w Q)
=) dz2 ~ ~ EI = dz®*  EI’
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we obtain

1
I = Ni()Q(@)], + Ni(e)M(2)[, + EI[N!(z)uf(z) dz~
. ]
(16)

] | ]
—ka[Ni(z)w!(z) dz + k[Ni(z)w.(z) dz — f.f\f;{a:}q(x) dz =0, (i=1,..,4).
0 0 0

In second integral from (16), utilizing the parts procedure once and taking into
account the relations (6) we obtain

!
Il = Ni@)V(@)], + Ni(@)M(2)[, + BI[N!(@)w!(2) dz+
0

(17)
] 1 1
+ha [N!(2)w!(z) dz + k/N,—(m)wE(o:)dz B fN,-(a:)q(x) dz =0, (i=1,..,4),
0 0

0

or in matrix notation,

(18) ([ke] + [ke] + [kec]{de} = {Se} — {Re},

were: [k] is the stiffness matrix of the flexure beam element; [k..] - the stiffness
matrix of springs layer; [k. ] - the stiffness matrix of shear layer; { R, } - the reactions
vector of double embeded beam from distributed loads on the element.

The last relation represents the elemental physical relation of the one-dimensional
finite element of beam resting on Pasternak elastic foundations.

The terms of [k.] matrix are calculated using the relation [2],...,[4]

[ 12 6/ —12 60 ]

‘ pr| 60 4 -6l 22
(19)  [k] = EI [[N/(2){N] N} Ny N}}]de = —
0 —12 -6/ 12 -6l

| 60 212 —61 4%

The terms of [k, ] matrix are calculated using the generic relation [4]

i 1
(20) (ke ] = k/.-\’,—(a:);\fj{x)dm = ktf_a\a-(_g)wj(g)dg (i, =1,...,4),
0 0



14 lancu B. Teodoru. V. Musat and M. Vrabie

resulting
r 156 221 54 =130
0 112 : af2
Kl 221 4l 130 =3l
(21) [k,_‘j;] = T
420 | . . :
54 131 156 —22!
| —131 312 —221 4P |

The terms of [k, | matrix are calculated using the generic relation

{ !
(22) [kl = ko [ Nila)Nj(x)dz = kgl [ NUON;(€)d€ (irG =1, 4).
0 0
obtaining [8]
r 36 3 =36 317
30 42 -3 -0

-36 31 36 -3l

| 31 -2 -3l a2 ]

The vector {R.} depends on the distributed load on the element and, for g(z) =
= q = const.. it result

gl ¢ g gl r
12

|
(24) {Re}:/N.(.r)q(.r)dz:{i o g
[¢]

4. Computational Example and Comparative Analysis

The effect of the shear stiffness of the foundation, as reflected by the Pasternak’s
two-parametric model, as well as the properties of the beam clement supported by
a subgrade, will be demonstrated by an example of a foundation beam in Fig.6.
Numerical calculations using Finite Element Method (FEM) has been performed
using 50 elements.

l?-UO kN lSOO kN
NN F'! A e O X Ih

Fig. 6.- Loading condition for the beam resting on elastic foundation.
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Five different sets of the material characteristics of the foundation, given in
Table 1, will be studied. For all studies cases the Young’s modulus of the beam
material is £ = 24,000 MPa.

Table 1
Sets of the Foundation Properties

A[B[C] D E
ko, [MN/m5] [300 | 500 | 700 | 1,000 | 1,200
ko G, [MN/m] 0.35 m? - ko [1]

Fach beam cross section recorded in Table 2 was analysed for each foundation
properties from Table 1 and for each length from Table 3.

Table 2 Table 3
Sets of Beams Cross Sections Sets of Beam Length
I1 {12 13| 14 L1 | L2 | L3 | L4

b, [em] [ 40 | 40 | 40 | 40 L, [cm] | 200 | 300 | 400 | 500
h, [cm] | 40 | 60 | 80 | 100

The obtained results are summarized in following figures: Figs.7,...,10 shows the
relative bending moment (percent variation of the bending behavior for the beam
on Pasternak’s foundation with respect to the same beamn on Winkler’s foundation)
for each beam length recorded in Table 3. Maximum relative bending moment with
respect to subgrade reaction values, is ploted in Figs. 11....,14 for L = 200, 300,400
and 500 cm, respectively.
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Fig. 7.~ Maximum relative bending moment with
respect to beam moment of inertia for L = 200 cm.
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Fig. 8.~ Maximum relative bending moment with
respect to beam moment of inertia for L = 300 cm.
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Fig. 9.— Maximum relative bending moment with
respect to beam moment of inertia for L = 400 cm.
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Fig. 11.- Maximum relative bending moment with
respect to subgrade reaction values, for L = 200 cm.
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Fig. 12.- Maximum relative bending moment with
respect to subgrade reaction values, for L = 300 cm.
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Fig. 14~ Maximum relative bending moment with
respect to subgrade reaction values, for L = 500 cm.

5. Conclusions and Comments

Numerical calculations are carried out in order to obtain the bending behavior of
the beams resting on two-parameter foundation and to clarify the effect of Paster-
nak’s foundation.

The effects of the second parameters of the foundation is analysed and given in
figures. A formulation of the two-node beam finite element on the two-parameter
elastic foundation model, based on the cubic shape function of a regular flexure
beam element and adding the contribution of the foundation as element foundation
stiffness matrices, is also presented.

The Pasternak’s foundation is a more realistic representation of foundation me-
dium than Winkler’s model but the difficulty in use of model consist in relating the
model coefficients to soil parameters; experimental values for the second foundation
parameter, kg, are not provided in the literature and thus, the only available method
for an analytical determination of the second parameter was found in [1].

The main conclusions of the paper can be summarized as follows:

1. When the length-to-height ratio of the beam foundation is relatively small
(L/h < 4) the beam can be analysed as if it rests on Winkler’s foundation; relative
difference in bending moment due the shear effect of the Pasternak’s foundation is
smaller than 5% and thus can be neglected.

2. Error caused by ignoring kg may be appreciable (30% in some cases) for large
length-to-height ratio.

3. The effect of the foundation shear stiffness is more accentuate for relative large
stiffness (> 300 MN/m®) hence the Pasternak model is more adequate for rocky or
gravelly soils.

4. For the practical foundation beams, cross sections are sets by recomandations
prescribed in the Design Codes; in major cases length-to-height ratio has values



Bul. Inst. Polit. Iasi, t. LII (LVI), f. 3-4, 2006 19

comprised between 3 and 6, hence soil shearing effect will affect the bending behavior
with no more than 10%.
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UN STUDIU PRIN ELEMENT FINIT AL COMPORTARII LA
INCOVOIERE A GRINZILOR REZEMATE PE MEDIU
ELASTIC CU DOI COEFICIENTI DE RIGIDITATE

(Rezumat)

Desi constituie o reprezentare nesatisficitoare pentru multe medii de fundare, modelul Win-
kler este cu precadere utilizat, de aproape un secol si jumitate, in problemele de interactiune
teren — structurd. Mediile de fundare, reprezentate prin modelul Winkler, nu pot prelua eforturi
de forfecare, producandu-se astfel o discontinuitate in deplasirile resorturilor invecinate. Acesta
constituie principalul dezavantaj al modelului Winkler, dezavantaj care in practicd poate duce la
erori semnificative in ceea ce priveste raspunsul structural. Pentru a inldtura neajunsurile aces-
tui model, numerosi cercetatori an propus diverse modele pentru terenul de fundare, modele care
tin cont de interactiunea cu terenul invecinat fundatiei. Dintre acestea trebuie, mentionate cele
cuprinse in grupa modelelor de teren cu doi coeficienti de rigiditate — numite astfel deoarece au
un al doilea coeficient de rigiditate (ce surprinde interactiunea dintre resorturi), suplimentar celui
din clasicul model Winkler. Din aceastd grupi de modele ale terenului de fundare fac parte: mo-
delul Filonenko-Borodich, modelul Pasternak, modelul generalizat si modelul Vlasov. Din punct de
vedere matematic ecuatiile care descriau aceste modele sunt ecuatii de echilibru si singura diferenta
consti in definirea parametrilor caracteristici. Pentru asigurarea simplititii in formulare, in lucrare
este tratat modelul Pasternak.

Pentru a analiza comportarea la incovoiere a unei grinzi Euler-Bernoulli (deformatii numai
din incovoiere), sprijinitd pe mediu elastic modelat cu doi parametri, se introduce o formulare
prin Element Finit bazati pe aproximarea campului de deplasiri printr-un polinom de gradul
trei. Efectul rigiditatii la forfecare al modelului Pasternak este pus in evidenta prin comparare cu
modelul Winkler. Studiile de caz reliefeazi acuratetea formularii si importanta efectului de forfecare
in directie verticald asociat cu mediul elastic de fundare.



